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ABSTRACT

We calculate photometric redshifts from the Sloan Digital Sky Survey Main

Galaxy Sample, The Galaxy Evolution Explorer All Sky Survey, and The Two

Micron All Sky Survey using two new training-set methods. 1 We utilize the

broad-band photometry from the three surveys alongside Sloan Digital Sky Sur-

vey measures of photometric quality and galaxy morphology. Our first training-

set method draws from the theory of ensemble learning while the second employs

Gaussian process regression both of which allow for the estimation of redshift

along with a measure of uncertainty in the estimation. The Gaussian process

models the data very effectively with small training samples of approximately

1000 points or less. These two methods are compared to a well known Artificial

Neural Network training-set method and to simple linear and quadratic regres-

sion. We also demonstrate the need to provide confidence bands on the error

estimation made by both classes of models. Our results indicate that variations

due to the optimization procedure used for almost all neural networks, combined

with the variations due to the data sample, can produce models with variations

in accuracy that span an order of magnitude. A key contribution of this paper

is to quantify the variability in the quality of results as a function of model and

training sample. We show how simply choosing the “best” model given a data set

and model class can produce misleading results. We also investigate supplemen-

tal information provided by the Sloan Digital Sky Survey photometric pipeline

related to photometric quality and galaxy morphology tracers. We show that,

1This paper was submitted to Astrophysical Journal in December 2005.
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using these additional quality and morphology indicators rather than only the

Sloan Digital Sky Survey broad-band u,g,r,i,z imaging data commonly used, one

can improve redshift accuracy by 10s of percent. Near Infrared j,h,ks broad-band

photometry provided from the Two Micron All Sky Survey and near-ultraviolet

and far-ultraviolet broad-band data from The Galaxy Evolution Explorer All

Sky Survey are also investigated where they overlap with the Sloan Digital Sky

Survey. Our results show that robust photometric redshift errors as low as 0.02

RMS can regularly be obtained. We believe these can be expanded to other

photometric surveys where sufficient redshift calibration objects exist.

Subject headings: Photometric Redshifts, Sloan Digital Sky Survey, Galaxy Evo-

lution Explorer All Sky Survey, Two Micron All Sky Survey

1. Introduction

Using broad-band photometry in multiple filters to estimate redshifts of galaxies was

likely first attempted by Baum (1962) on 25 galaxies in nine broad-band imaging filters in

the Visible and Near Infrared range. Given the low throughput of spectrographs much is

to be gained by attempting to estimate galaxy redshifts from broad-band colors rather than

from measurement of individual spectra. In the Sloan Digital Sky Survey (SDSS, York et

al. 2000) 100 million galaxies will have accurate broad-band ugriz photometry, but only 1

million galaxy redshifts from this sample will be measured. If a method can be found to

obtain an accurate estimate of the redshift for the larger SDSS photometric catalog, rather

than the smaller spectroscopic one, much better constraints on the formation and evolution of

large-scale structural elements such as galaxy clusters, filaments, and walls and cosmological

models in general (e.g. Blake & Bridle 2005) may be achieved.

Two approaches, Spectral Energy Distribution fitting (SED fitting) also known as

“template-fitting” and the training-set method (TS method), have been used to obtain pho-

tometric redshifts over the past 30 years. In order to use either method galaxies with a

similar range in magnitude and color over the same possible redshift range must be used

to estimate the redshifts from the broad-band colors measured. SED fitting has historically

been the preferred method (e.g. Koo 1985; Loh & Spillar 1986; Lanzetta et al. 1996; Kodama

et al. 1999; Beńıtez 2000; Babbedge et al. 2004; Padmanabhan et al. 2005) given the his-

torically low numbers of galaxies with spectroscopically confirmed redshifts in photometric

surveys of the universe.

There are many approaches to SED fitting. For example, Kodama et al. (1999) uses four
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filter (BVRI) photometry and a Bayesian classifier using SED fitting which they have tested

out to z=1 and claim is valid beyond this redshift. The approach of Beńıtez (2000) makes

use of additional information such as the shape of the redshift distributions and fractions

of different galaxy types. This may be helpful in instances where one has a limited sample

size at large redshifts, but it may also bias an estimator by making assumptions which one

cannot verify statistically.

TS methods rely on having a large enough sample of spectroscopic redshifts to represent

the magnitudes and colors of the broad-band photometric sample. Hence these methods

have been restricted to relatively nearby z<1 surveys, such as the SDSS, rather than much

deeper surveys like the Hubble Deep Field (Williams et al. 1996) which have a paucity of

measured galaxy redshifts at such extreme distances. In fact, for redshifts above 1 there are

typically not enough measured galaxy redshifts to use TS methods with any accuracy, hence

SED fitting has been used exclusively for z>1. See Beńıtez (2000) for an excellent detailed

discussion of the differences and similarities between these two commonly used approaches.

In the past 10 years a large number of empirical fitting techniques for TS methods have

come into use and new techniques continue to be developed. Some examples of linear and

non-linear methods include: 2nd and 3rd order polynomial fitting (Brunner et al. 1997);

quadratic polynomial fitting (Connolly et al. 1995; Hsieh et al. 2005); Support Vector Ma-

chines (Wadadekar 2005); and the Artificial Neural Network method of Collister & Lahav

(2004).

We explore the problem of estimating redshifts from broad-band photometric measure-

ments using the idea of a Virtual Sensor (Srivastava 2005; Srivastava & Stroeve 2003). These

methods allow for the estimation of unmeasured spectral phenomena based on learning the

potentially nonlinear correlations between observed sets of spectral measurements. In the

case of estimating redshifts, we can learn the nonlinear correlation between spectroscopically

measured redshifts and broad-band colors. Statistically speaking, this amounts to building a

regression model to estimate the photometric redshift. However, the procedure is much more

complex than a simple regression due to the significant effort required for model building

and validation. The concept of Virtual Sensors applies to the entire chain of analytical steps

leading up to the prediction of the redshift. Figure 1 shows a schematic of the assumptions

behind a Virtual Sensor with a cartoon on the left and the real-world case with the five

SDSS bandpasses and a sample galaxy spectrum overlayed on the right.

As a baseline comparison, results from a TS based Neural Network package called ANNz

(Collister & Lahav 2004) are presented. Linear and quadratic fits along the lines discussed

in Connolly et al. (1995) are also presented. Unlike all other previous work, we also discuss

the application of bootstrap resampling (Efron 1979; Efron & Tibshirani 1993) for the linear,
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quadratic, and ANNz models.

We apply the TS methods discussed above to the SDSS five color (ugriz) imaging survey

known as the Main Galaxy Sample (MGS, Strauss et al. 2002) which has a large calibration

set of spectroscopic redshifts for the SDSS Data Release 2 (DR2, Abazajian et al. 2004)

and SDSS Data Release 3 (DR3, Abazajian et al. 2005). The Two Micron All Sky Survey2

extended source catalog along with Galaxy Evolution Explorer (GALEX, Martin et al. 2005)3

data are also used in conjunction with the SDSS where all three overlap to create a combined

catalog for use with our TS methods.

The datasets used in our analysis are discussed in § 2, discussion of the photometry and

spectroscopic quality of the datasets along with other photometric pipeline output properties

of interest in § 3, the classification schemes used to obtain photometric redshifts in § 4,

comparison of the results in § 5, and we summarize in § 6.

2. The Sloan Digital Sky Survey, The Two Micron All Sky Survey and The

Galaxy Evolution Explorer Datasets

Most of the work herein is related to the SDSS MGS DR2 and DR3, and the photomet-

ric quantities associated with them. For completeness we have added the 2MASS extended

source catalog and GALEX All Sky Survey photometric attributes where data exists for the

same SDSS MGS galaxies with corresponding redshifts. The 2MASS and GALEX data sam-

ples are small where they overlap with those of the SDSS MGS galaxies with corresponding

known spectroscopic redshifts in the DR2 and DR3. However, they appear copious enough

for our new TS methods as there is no evidence of over-fitting of these smaller data samples.

The Sloan Digital Sky Survey (York et al. 2000) will eventually encompass roughly 1/4

of the entire sky collecting five band photometric data in 7700 deg2 down to 23rd magnitude

in r on of order 108 celestial objects. For about 1 in every 100 of these objects down to g∼20

a spectrum will be measured coming to a total of about 106 galaxy and quasar redshifts over

roughly the same area of the sky (7000 deg2) as the photometric survey (Stoughton et al.

2002). The five broad-band filters used, u,g,r,i and z, cover the optical range of the spectrum

(Table 1).

We use several catalogs derived from the SDSS. The MGS (Strauss et al. 2002) of the

2http://www.ipac.caltech.edu/2mass/

3http://www.galex.caltech.edu/
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SDSS is a magnitude limited survey that targets all galaxies down to rPetrosian<17.77. We

use the MGS from DR2 and DR3 where spectroscopic redshifts exist in order to validate our

methods.

The 2MASS extended source catalog contains positions and magnitudes in j, h, and ks

filters for 1,647,599 galaxies and other nebulae across the entire sky (Table 1). The extended

source magnitude limits in the 3 filters are j=15.0, h=14.3 and ks=13.5. See Jarrett et al.

(2000) for more detailed information on the extended source catalog.

The GALEX data release 1 (GR1)4 All-Sky photometry catalog contains positions and

magnitudes in two Ultraviolet bands called the Far Ultraviolet Band (FUV) and the Near

Ultraviolet Band (NUV). See Table 1 for details on these broad-band pass filters. Limiting

magnitudes for the All-Sky (100 second integrations) FUV is 19.9 and 20.8 for the NUV.

See Morrissey et al. (2005) and references therein for more details of the in-orbit instrument

performance and Martin et al. (2005) for mission details. The All-Sky GR1 covers 2792 deg2

of the sky.

3. Photometric and redshift quality, morphological indicators and other

catalog properties

Historically most determinations of photometric redshifts from large photometric sur-

veys contain only broad-band magnitudes without reference to other parameters that may

have been available from the photometric aperture reductions themselves. With the SDSS

most papers have utilized only the five band photometry (ugriz) while a host of additional

parameters like Petrosian radii (Strauss et al. 2002), measures of ellipticity (Stoughton et

al. 2002), and other derived quantities are readily available from the photometric pipeline

reductions.

This section explains the various quality flags used to obtain data from the SDSS photo-

metric and redshift catalogs, the photometric catalogs of the 2MASS extended source catalog

and the GALEX All Sky survey. We also explore the most likely candidates to yield infor-

mation related to the prediction of redshifts in the Main Galaxy Sample (MGS) of the SDSS

for our TS calculations. The last subsection (§ 3.6) describes the four dataset types used in

our analysis.

4http://galex.stsci.edu/GR1/
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3.1. The SDSS photometric quality flags

The SDSS photometric pipeline (Lupton et al. 2001) produces a host of quality flags

(Stoughton et al. 2002, Table 9) giving additional information on how the photometry was

estimated. The primtarget flag is used to make sure the Main Galaxy Sample is chosen

and extinction corrected model magnitudes (Stoughton et al. 2002) are used throughout this

work (See query in Appendix I).

Herein we define GOOD and GREAT quality photometry (see Table 2 for a description)

where ! means NOT:

GOOD: !BRIGHT and !BLENDED and !SATURATED

GREAT: GOOD and !CHILD and !COSMICRAY and !INTERP

In this manner one can determine if a difference in the quality of the photometry makes

any difference in the errors of the estimated photometric redshifts. The only reason not to

always use the very best photometry (what we call GREAT in this work) is that the total

number of galaxies can drop by orders of magnitude and hence one may end up sampling a

much smaller number of objects. However, not everyones needs are the same and hence the

quality can be weighted based on what is desirable. See Appendix I for the complete SDSS

skyserver5 queries used to obtain the data used in this paper.

3.2. The SDSS redshift quality flags

The SDSS spectroscopic survey (Stoughton et al. 2002; Newman et al. 2004) has several

flags to warn the user of poor quality redshifts that come from the spectroscopic pipeline

reductions (Stoughton et al. 2002). This is important because an inaccurate training-set will

result in poor results no matter which method is used. To this end we utilized an estimate

of the confidence of the spectroscopic redshift called zConf. Hence only those galaxies with

zConf>0.95 in the MGS are chosen. Other authors (e.g. Wadadekar 2005) have chosen to

use only the zWarning flag set to zero. Our studies find zConf values far below that of 0.95

when only the zWarning=0 flag is set. This may put into question the reliability of such

redshift estimates. In addition, by setting zConf to values greater than 0.95, as we have

done, the zWarning=0 flag is also included.

5http://casjobs.sdss.org
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Table 1: Survey filters and characteristics

Bandpass Survey λeff ∆λ FWHM 1

(Å) (Å) (′′)
FUV GALEX 1528 442 4.5

NUV GALEX 2271 1060 6.0

u SDSS 3551 600 1-2

g SDSS 4686 1400 1-2

r SDSS 6165 1400 1-2

i SDSS 7481 1500 1-2

z SDSS 8931 1200 1-2

j 2MASS 12500 1620 2-3

h 2MASS 16500 2510 2-3

ks 2MASS 21700 2620 2-3

1Dependent upon seeing at time of observation for ground based data.

Table 2: Photometric Quality Flags used in this paper a

Name Bitmask Description

BRIGHT 0x00002 Object detected in first bright object finding step; generally brighter than r=17.5

BLENDED 0x00008 Object had multiple peaks detected within it

SATURATED 0x40000 Object contains one or more saturated pixels

CHILD 0x00010 Object product of attempt to deblend BLENDED object

COSMICRAY 0x01000 Contains pixel interpreted to be part of a cosmic ray

INTERP 0x20000 Object contains pixel(s) values determined by interpolation

aStoughton et al. (2002)
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3.3. 2MASS photometric quality and cross-reference with the SDSS

Given the high quality constraints of the published photometry of the 2MASS extended

source public release catalog (Jarrett et al. 2000), only one quality flag is checked. The

extended source catalog confusion flag, “cc flg”, is required to be zero in all three band

passes.

The j m k20fe, h m k20fe, and k m k20fe isophotal fiducial elliptical aperture magni-

tudes as defined in the 2MASS database are extracted for the respectively described j, h,

and ks 2MASS magnitudes used in this work.

The extended source catalog was loaded into our local SQL database containing the

SDSS DR2 to create a combined catalog (see next section).

3.4. GALEX photometric quality and cross-reference with the SDSS

Near-Ultraviolet (nuv) and far-Ultraviolet (fuv) broad-band photometry are extracted

from the GALEX database for our use. Several quality flags are used to make sure the data

are of the highest quality. Bad photometry values in nuv photometry (nuv mag) and fuv

photometry (fuv mag) are given the value of -99 in the GR1 database and these are excluded

from our catalog if either or both filters contain such a value. The nuv artifact=0 flag is

set to avoid all objects with known bad photometry artifacts. Hence if nuv artifact has any

value other than zero the nuv mag is considered bad. Currently fuv artifact is always zero

in the GR1. The band=3 flag is used since it indicates detection in both nuv and fuv bands.

Finally, a value of fov radius<0.55 is required as this is the minimum recommended value

to make sure the distance of the object in degrees from the center of the field of view of the

telescope is not too large, as this is known to cause problems in the quality of the photometry

obtained.

As with the 2MASS extended source catalog, the GALEX All Sky data was loaded into

our local SQL database now containing the SDSS DR2 and 2MASS catalogs. The SDSS

MGS with redshifts and the 2MASS extended source catalogs were cross-referenced with

GALEX when all three catalog positions agreed to within 5′′. The methods and results used

are comparable to those of Seibert et al. (2005) hence we do not go further into a description

of the combined catalog. See Appendix I for a sample query.
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3.5. SDSS Petrosian Radii, Inverse Concentration Index, FracDev, and Stokes

The photometry properties discussed below are available in all five SDSS bandpasses

(ugriz), but we use the r bandpass values for these quantities as, in general, the r band

result has the lowest error and gives more consistent results. This is also reasonable given

the low redshifts used, but this strategy would be questionable at higher redshifts when

morphological features in the rest frame r band start to get more strongly shifted to the i

and z bands.

It has been shown that using Petrosian (1976) 50% and 90% flux radii (Wadadekar

2005) in addition to the SDSS five band photometry one can improve results by as much as

15% (see Table 3). The Petrosian 50% (90%) radius is the radius where 50% (90%) of the

flux of the object is contained. Given the low redshifts of this catalog they can be assumed

to be a rough measure of the angular size of the object. The ratio of these quantities is

called the Petrosian inverse concentration index (CI) 1/c ≡ r50/r90 which measures the slope

of the light profile. The concentration index corresponds nicely to eyeball morphological

classifications of large nearby galaxies (Strateva 2001; Shimasaku et al. 2001).

The Petrosian Radii are also used in combination with a measure of the profile type

from the SDSS photometric pipeline reduction called FracDev. FracDev comes from a linear

combination of the best exponential and de Vaucouleurs profiles which are fit to the image

in each band. FracDev is the de Vaucouleurs term (§3.1, Abazajian et al. 2004). It is

one for a pure de Vaucouleurs profile typical of early type galaxies and zero for a pure

exponential profile typical of late type galaxies. FracDev is represented as a floating point

number between zero and one. This is similar to the use of the Sérsic n-index (Sérsic 1968)

for morphological classification. The idea of using FracDev as a proxy for the Sérsic index n

comes from Vincent & Ryden (2004) who show that if Sérsic profiles with 1<n<4 accurately

describe the SDSS galaxy early and late types then FracDev is a “monotonically increasing

function of the Sérsic index n, and thus can be used as a surrogate for n”. For a recent

discussion on Sérsic profiles see Graham & Driver (2005). Blanton et al. (2003a,b) have

also shown that Sérsic fits to the azimuthally averaged radial profile of an SDSS object

provide a better estimate of galaxy morphology than the Petrosian inverse concentration

index (1/c≡r50/r90) for the majority of MGS objects. However, at the time of this work

these profiles were only available in the derived SDSS DR2 NYU-VAGC catalog of Blanton

et al. (2005) and our own studies do not show appreciable improvement over the Petrosian

inverse concentration index when used to calculate photometric redshifts.

Measures of galaxy ellipticity and orientation, as projected on the sky, can be obtained

from the SDSS photometric pipeline “Stokes” parameters Q and U (Stoughton et al. 2002).
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These are the flux-weighted second moments of a particular isophote.

Mxx ≡ 〈x
2

r2
〉, Myy ≡ 〈y

2

r2
〉, Mxy ≡ 〈xy

r2
〉 (1)

According to Stoughton et al. (2002) when the isophotes are self-similar ellipses one finds

Q ≡ Mxx −Myy =
a− b

a + b
cos(2φ), U ≡ Mxy =

a− b

a + b
sin(2φ), (2)

Since the Stokes values are related to the axis ratio and position angle, using these

quantities in combination with those above should give additional information on the galaxy

types we are sampling and hence help in the estimation of photometric redshifts. However,

in our studies we only utilize the Q parameter defined above as we see no improvement when

using both Q and U.

3.6. Description of the four dataset types used

Four classes of datasets are used in our analysis, based on the descriptions above.

Dataset 1: SDSS MGS GOOD quality photometry. All of the data comes from the SDSS

MGS with the GOOD quality flags set. There are 6 subsets in this dataset as seen in the

left hand side of Figure 3.

1. u-g-r-i-z: contains only the SDSS five band extinction corrected magnitudes.

2. u-g-r-i-z-petro50-petro90: contains the u-g-r-i-z data and the Petrosian 50% and 90%

radii in the r band.

3. u-g-r-i-z-petro50-petro90-ci: contains the u-g-r-i-z-petro50-petro90 data and the Pet-

rosian concentration index as described in § 3.5.

4. u-g-r-i-z-petro50-petro90-ci-qr: contains the u-g-r-i-z-petro50-petro90-ci and the Stokes

Q parameter as described in § 3.5.

5. u-g-r-i-z-petro50-petro90-fracdev: contains the u-g-r-i-z-petro50-petro90 and the FracDev

parameter as described in § 3.5.

6. u-g-r-i-z-petro50-petro90-qr-fracdev: contains the u-g-r-i-z-petro50-petro90-fracdev and

the Stokes Q parameter as described in § 3.5.
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The total dataset consists of 202,297 galaxies.

Dataset 2: SDSS MGS GREAT quality photometry. All of the data, as seen in Figure 4,

comes from the SDSS MGS with the GREAT quality flags set. There are 6 subsets named

and described in the same way as for Dataset 1. The total dataset consists of 33,328 galaxies.

Dataset 3: GALEX GR1, SDSS MGS GOOD quality photometry, and the 2MASS extended

source catalogs labeled as nuv-fuv-ugriz-jhk. As seen in the left hand side of Figure 5, it

consists of the two Ultraviolet magnitudes from the GALEX GR1 database (nuv and fuv). It

has the five SDSS MGS extinction corrected magnitudes (u,g,r,i,z) with the GOOD quality

photometry flags set, but unlike Datasets 1 and 2 there are no other SDSS inputs used.

It also contains the three 2MASS extended source catalog magnitudes (j,h,ks). The total

dataset consists of 3095 galaxies.

Dataset 4: GALEX GR1, SDSS MGS GREAT quality photometry, and the 2MASS extended

source catalogs. As shown on the right hand side of Figure 5 it is nearly the same as Dataset

3, except the SDSS MGS GREAT quality photometry flags are set. The total dataset consists

of 326 galaxies.

4. Training Methods

We estimate the photometric redshifts of the galaxies in the SDSS, 2MASS and GALEX

databases using several classes of algorithms: simple linear and quadratic regression, neu-

ral networks and Gaussian processes. These methods have different properties and make

different assumptions about the underlying data generating process which will be discussed

below.

4.1. Linear and Quadratic fits

Linear and quadratic polynomial fitting along the lines of Connolly et al. (1995); Hsieh

et al. (2005) are used as a way to benchmark the new methods discussed below. The linear

regression for the SDSS ugriz magnitudes would be given by an equation of the form:

Z = A + Bu + Cg + Dr + Ei + Fz (3)

Where A, B, C, D, E, and F result from the fit. All data points are weighted equally.

Z is the photometric redshift.
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Fig. 1.— The left figure is a cartoon to help illustrate the need for a Virtual Sensor. We have

spectral measurements from two sensors S1 and S2, (solid and dot-dashed lines, respectively).

We wish to estimate the output of sensor S1 for a wavelength where there is no actual

measurement from the sensor. Note that some sensor measurements overlap perfectly, as

in the case of wavelength = 3, and in other cases, such as wavelength = 1, there is some

overlap in the measurements. The right figure shows the sensitivity through an airmass of

1.3 for extended sources in the five SDSS (u,g,r,i,z) filter bandpasses with the spectrum of

NGC5102 (Storchi-Bergmann et al. 1995) purposely redshifted 1000Å overlayed.

The quadratic form is similar and again all points are weighted equally.

Z = A+Bu+Cg+Dr+Ei+Fz+Guu+Hgg+Irr+Jii+Kzz+Lug+Mur+Nui+Ouz+Pgr+Qgi+Rgz+Sri+Trz+Uiz (4)

4.2. The Artificial Neural Networks approach

The Artificial Neural Network (ANNz) approach of Collister & Lahav (2004) is specifi-

cally designed to calculate photometric redshifts from any galaxy properties the user deems

desirable. It has been demonstrated to work remarkably well on the SDSS DR1 (Collister

& Lahav 2004). The ANNz package contains code to run back-propagation neural networks

with arbitrary numbers of hidden units, layers and transfer functions. We chose 2 hidden

units, and 10 nodes in each of these units (see Figure 2). See the next section for a more

detailed description of neural networks in general, or see Collister & Lahav (2004).
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4.3. The Ensemble Model

Back-propagation neural networks have been used extensively in a variety of applications

since their inception. A good summary of the methods we use can be found in Bishop (1995).

Neural networks are a form of nonlinear regression in which a mapping, defined as a linear

combination of nonlinear functions of the inputs, are used to approximate a desired target

value. The weights of the linear combination are usually set using an approach, based on

gradient descent of a cost function, that is defined between the target value and the estimated

value. The cost function usually has multiple local minima, and the model obtained at the

end of a training cycle usually corresponds to one such minima and not to a global minimum.

The global minimum would correspond to the model that best approximates the training set.

Generalization of the model on a test set (i.e., data that is not used during the model building

phase) can be shown to be poor if a global minimum is reached due to the phenomenon of

over-fitting.

The following material is a standard demonstration that although the neural network

computes a nonlinear function of the inputs, distribution of errors follows a Gaussian if the

squared error cost function is minimized. The cost function encodes an underlying model of

the distribution of errors. For example, suppose we are given a data set of inputs X , targets

Y , and a model parameterized by Θ. The standard method of obtaining the parameter Θ

is by maximizing the likelihood of observing the data D = (X ,Y) with the model Θ. Thus,

we need to maximize:

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)

∝ P (D|Θ)P (Θ)

and we note that P (D|Θ) = P (X ,Y|Θ) and so:

P (X ,Y|Θ) = P (Y|X , Θ)P (X|Θ) (5)

The function P (Θ) represents the prior distribution over model parameters. If we have

knowledge about the ways in which the weights of the model are distributed before the data

arrives, such information can be encoded in the prior. Neal (1996) has shown that in the

limit of an infinitely large network, certain simple assumptions on the distribution of the

initial weights make a neural network converge to a Gaussian process. If we assume that

the errors are normally distributed, we can write the likelihood of an input pattern xi ∈ X



– 14 –

having target yi ∈ Y with variance σ2 as 6:

L(yi|xi, Θ) = P (yi|xi, Θ)

=
1√
2πσ

exp−(yi − ŷi)
2

2σ2

The product of these likelihoods across the N data points in the data set D is the likelihood

of the entire data set:

P (Y|X , Θ) =
N∏

i=1

P (yi|xi, Θ)

=
N∏

i=1

1√
2πσ

exp−(yi − ŷi)
2

2σ2
(6)

¿From this equation, it is straightforward to see that maximizing the log of this likelihood

function is equivalent to minimizing the squared error, which is the standard cost function

for feed-forward neural networks used in regression problems.

Neural networks are often depicted as a directed graph consisting of nodes and arcs as

shown in Figure 2. For a p dimensional input x the value at the k hidden nodes z is the

k × 1 vector:

z = s(W1x + b1) (7)

and the final estimate of the target y is given by ŷ:

ŷ = W2z + b2

= f(x, Θ) (8)

where W1 is a k × p matrix, b1 is a p × 1 vector, W2 is a k × l matrix and b2 is an l × 1

vector. In the case where the network only generates one output per input pattern as is the

case in the studies presented here, l = 1.

The function s is a nonlinear function and is chosen as a sigmoid:

s(a) ≡ 1

1 + exp(−a)
. (9)

Neural networks are trained to fit data by maximizing the likelihood of the data given

the parameters. The model obtained through this maximization process corresponds to a

6We follow the convention that bold-faced notation indicates vectors and non-bold faced symbols indicate
scalars
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Fig. 2.— A graphical depiction of a neural network with 4 inputs, 4 hidden units, and 3

outputs. The outputs are nonlinear functions of the inputs.

single model sampled from the space of models parameterized by the model parameters

Θ. If we assume Gaussian errors, we have shown that the cost function is the well-known

sum-squared error criterion. The network is trained by performing gradient descent in the

parameter space Θ. The derivative of this cost function with respect to each weight in the

network is calculated and the weights are adjusted to reduce the error. Because the cost

function is non-convex, the optimization problem gets caught in local minima, thus making

training and model optimization difficult. In order to reduce the effects of local minima, we

performed bagging or Bootstrap AGgregation (Breiman 1996). In this procedure, we sample

the data set D M times with replacement. For each sample, we build one neural network

in the ensemble of M neural networks. The final prediction is formed by taking the mean

prediction of all M neural networks:

ŷ =
1

M

M∑
i=1

ŷi (10)

Breiman (1996) showed that this procedure results in a regression model with lower error.

Our results, which we term our “Ensemble Model” (see Tables 4–6), show the effects of

the local minima and the distribution of errors that result from this problem on the SDSS,

2MASS and GALEX data sets.
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4.4. Kernel Methods and Gaussian Processes

In many ways, neural networks are attractive models for nonlinear regression problems

because they can scale to large data sets, and provide a good baseline from which to compare

other methods. In the machine learning literature, kernel methods have in many ways

subsumed neural networks because it was shown that as the number of hidden units increases,

if we assume that the weights and biases of the neural network are drawn from a Gaussian

distribution (thus assuming that P (Θ) is Gaussian), the prior distribution over functions

implied by such weights and biases converges to a Gaussian process (Neal 1996; Cristianini

& Shawe-Taylor 2000).

To describe a Gaussian process, we first note that in the case of a neural network, ŷ is

defined as a specific nonlinear function of x, parametrized by Θ, ŷ = f(x, Θ). In a Gaussian

process, we actually define a prior distribution over the space of functions f which is assumed

to be Gaussian. Thus, we have:

P [(f(x1), f(x2), ..., f(xN)) = (y1, y2, ..., yN)] ∝ exp(−1

2
yT Σ−1y). (11)

The marginals for all subsets of variables of a Gaussian process are Gaussian. The covariance

matrix Σ measures the degree of correlation between inputs xi and xj. The choice of the

correlation function Σ defines a potentially nonlinear relationship between the inputs and

the outputs. If we choose Σ(xi,xj) = K(xi,xj), where K is a positive definite function, we

obtain a specific Gaussian process induced by the kernel function K. To make a prediction

with a Gaussian process, we assume that a covariance function has been chosen, and then

compute:

P (yN+1) =
P (yN+1,y)

P (y)
(12)

We know that this distribution will be Gaussian, and the mean and variance of the distri-

bution can be computed as follows Cristianini & Shawe-Taylor (2000):

ŷN+1 = f(xN+1) = yT (K + λ2I)k (13)

σ2(xN+1) = Σ(xN+1,xN+1)− kT (K + λ2I)−1k (14)

where k = Σ(xi,x), K = K(xi,xj) and λ is an externally tuned parameter that represents

the noise in the output.

The nonlinearity in the model comes from the choice of the kernel function K. Typical

choices for K include the radial basis function: K(xi,xj) = exp(− 1
2σ2 ||xi − xj||2) or the

polynomial kernel K(xi,xj) = (1 + xT
i xj)

r. We choose the latter for this study.
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Fig. 3.— The six plots to the left contain the five training methods for each of the six inputs

applied to the SDSS GOOD datasets known as Dataset 1. The five plots to the right are our

training-set results for each of the five training methods applied to the six different SDSS

GOOD inputs.

It can be shown that Gaussian process regression, as described above, builds a linear

model in a very high dimensional feature space which is induced by the nonlinear kernel func-

tion K. One distinct advantage of the Gaussian process is that it delivers point predictions

as well as a confidence interval around the predictions.

5. Discussion

Results discussed below include the two different SDSS photometric quality flag combi-

nations used called GOOD and GREAT. For the SDSS data 10 different photometric pipeline

output parameters are utilized in different combinations (see § 3.6): u,g,r,i, and z extinction

corrected model magnitudes, r band Petrosian 50% flux radii (petro50) and Petrosian 90%

flux radii (petro90), the Petrosian inverse concentration index (CI) derived from these two

quantities, the r band FracDev quantity (FD), and r band Stokes value all as defined in § 3.5

and 3.6. Results are also discussed from the combined catalogs of the SDSS MGS (u,g,r,i,z

magnitudes only) galaxies with redshifts, the 2MASS extended source catalog (j,h,ks mag-

nitudes), and GALEX All-Sky (nuv,fuv magnitudes) data sets. The sample sizes for each of

these datasets are also given in Tables 4–6.

In order to make our results as comparable as possible the same validation, training

and testing sizes are used in our analysis for ANNz, Ensemble Model, linear and quadratic

fits: training=89%, validation=1% and testing=10%. In order to put proper confidence

intervals on the error estimates from these methods bootstrap resampling (Efron 1979; Efron
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Fig. 4.— The six plots to the left contain the five training methods for each of the six inputs

applied to the SDSS GREAT datasets known as Dataset 2. The five plots to the right are

our training-set results for each of the five training methods applied to the six different SDSS

GREAT inputs.

& Tibshirani 1993) is utilized on the training data. 90% of the training data is used for each

of 100 bootstraps.

For the Gaussian processes the situation is slightly different. The same percentages for

training, validation, and testing are utilized. However, for Datasets 1-3 1000 samples from

the training data are used for each of the bootstrap runs. For Dataset 4 only 50 samples

are utilized for each of the bootstrap runs. The Gaussian processes require matrix inversion

which is an O(N3) operation. Hence small training sets were required to complete this

project in a reasonable time frame.

In Tables 4–6 we report robust 90% confidence intervals around our 50% RMS result

for all of these methods from the bootstrap resampling. Figures 3, 4 and 5 show the same

information, albeit in a more detailed graphical format.

Table 4 and Figure 3 demonstrate our results on Dataset 1. The plots in Figure 3

clearly demonstrate that the ANNz and E-Model neural network methods are superior in

their accuracy over nearly all bootstrap samples (labeled “model number” in Figures 3-5)

no matter which input quantities are used. The linear and quadratic fits fair the worse as

is expected. The Gaussian process model is usually found in between. However, it must be

remembered that only ∼1000 sample points are used for training in each case and therefore

it is possible that it is not sampling all of the possible redshift-color space. Nonetheless it

does an excellent job given the small data samples used in comparison to the other methods.

It is also clear that the inputs used reproduce very similar results once one goes beyond the

five band magnitudes of the SDSS and quantities like the Petrosian concentration index or
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the Stokes measure of ellipticity are used. The best method, our Ensemble Model, regularly

reproduces RMS values of less than 0.019 no matter the confidence level (or bootstrap

sample) used.

Table 5 and Figure 4 for Dataset 2 give very similar results to that of Dataset 1 just

discussed. Lower RMS errors are obtained than that of the GOOD quality data, but there

is more variation in the confidence intervals evidenced by increasing slope as a function of

bootstrap sample in Figure 4. As with Dataset 1, the RMS error results are lower but similar

when the five band SDSS magnitudes are supplemented with quantities like the Petrosian

radii, or the FracDev measurement.

While Dataset 2 does on occasion have slightly better RMS errors than Dataset 1 in

general there is little difference in the use of higher quality photometry and we would not

recommend the use of the higher quality photometry of Dataset 2 as described herein in

general.

Table 6 and Figure 5 are the results of using Datasets 3 and 4. The right hand side

of Figure 5 for Dataset 4 (which has better photometric quality) shows again an increase

in the variability of the RMS error as a function of bootstrap sample larger than that of

the GOOD sample from Dataset 3 to the left. In general the right hand side plot with the

better SDSS photometry of Dataset 4 has RMS errors either the same or worse than those

from the SDSS only Datasets 1 and 2 in Figures 3 and 4. The variability in the RMS error

as a function of bootstrap and the generally large RMS errors leads one to believe that the

sample size is too small to train on. Given that there are only 326 objects in Dataset 4 it

shouldn’t be too surprising. The apparent ability of the quadratic regression to do so well

might point one to possible over-fitting of the data.

However, on the left hand side of Figure 5 the story for Dataset 3 is very different.

Here the variability is much less as a function of bootstrap, the RMS errors are generally

quite low and the prediction abilities of the different methods are consistent with those

observed in the SDSS Datasets 1 and 2 found in Figures 3 and 4. The Ensemble Model once

again surpasses all other methods for 95% of the bootstrap samples followed closely by the

Gaussian processes and ANNz methods. Here one can see that the Gaussian process method

is more competitive as it is likely to be sampling all possible templates of the 3095 input

galaxies even with only 1000 samples per run.

In order to show the effects of sampling and local minima for the Ensemble Model on

the quality of redshift predictions we show a set of 100 neural networks and show their final

RMS errors in Figures 6 and 7. Each neural network is built by drawing a sample from the

training set with replacement and then performing the gradient descent maximization process
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described earlier. We train until the model converges, which is defined as the gradient-descent

iteration at which the magnitude of the gradient drops below a preset threshold. This model

corresponds to one point on the top panel of Figures 6 and 7.

The middle panel of Figure 7 shows the cumulative distribution function for the errors

shown in the upper panel. The x-axis is the RMS error (e0), and the y-axis is P(RMS < e0).

The plot indicates that about 70% of the models we generated have an RMS error less than

0.1. This plot also indicates that reporting the minimum observed RMS value, which is done

throughout the literature on this topic (Collister & Lahav 2004, e.g. ANNz) is misleading.

For the models computed for this empirical cumulative distribution function, the quantity

P(RMS < e0) rapidly vanishes as e0 → 0.04. This implies that such models are not only

highly unlikely, but also highly non-robust.

In order to contrast this distribution with the empirical distributions observed on other

data sets, we chose to show Figure 6. This figure, unlike the previous figure discussed, shows

that the variation imposed by the optimization procedure, combined with the variations in

the data set, have a relatively small effect on the quality of predictions: nearly 70% of the

models have a very low error rate, with the distribution rapidly increasing after that. Notice

that the empirical cumulative distribution function shown in the lower panel rises sharply at

the onset of the curve. This indicates that 70% of the models have an error less than about

0.025. Again, this variation and apparent combined stability of the data set and optimization

procedure would be entirely lost if only the minimum value of the distribution was reported.

For comparison in Figure 8 one can see the known spectroscopic redshift plotted against

the calculated photometric redshift from the test data for our 5 algorithms used against

the ugriz-petro50-petro90-ci-qr GREAT dataset (part of Dataset 2) as presented in Table 5.

Notice that the Gaussian process plot (lower middle) has a larger number of points which is

due to the smaller training set and larger testing sets used in this algorithm. The 6th plot in

the lower right hand corner of Figure 8 contains the Gaussian process model results against

the GREAT nuv-fuv-ugriz-jhk Dataset 4 as presented in Table 6.

6. Conclusion

We have shown that photometric redshift accuracy of SDSS photometric data can be

improved over that of previous attempts through a careful choice of additional photomet-

ric pipeline outputs that are related to angular size and morphology. Adding additional

bandpasses from the Ultraviolet (GALEX) and Infrared (2MASS) can be even more helpful,

but the current sample sizes are presently too small to be useful for Large Scale Structure
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studies.

We have also shown that there is little difference in the use of the higher quality SDSS

photometry as defined herein. Hence we would not recommend its use because it decreases

the sample size markedly and does not decrease the RMS errors in the photometric redshift

prediction.

We wish to stress that when using a neural network model for studies of photometric

redshifts care must be taken when reporting the results of such models. There is a tendency

in the astronomical literature to report only the best fit model, which is often unlikely to be

the one used to calculate the final photometric redshift estimates.

The effects of local minima on prediction has also been discussed in some detail and we

describe the way in which an ensemble of neural networks can reduce the problem.

We have also discussed the result of using Gaussian processes for regression, which

avoids many of the local minima problems that occur with neural networks. One of the

great strengths of Gaussian processes as used herein is the ability to use small training sets,

which may be helpful in high redshift studies where very small numbers of measured redshifts

are available.
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A. SDSS Queries

Below are the queries used against the SDSS DR2 and DR3 databases to obtain the

data used throughout this paper.

Query used to obtain Dataset 1:

Select p.ObjID, p.ra, p.dec,

p.dered u, p.dered g, p.dered r, p.dered i, p.dered z,

p.petroR50 r, p.petroR90 r, p.fracDeV r, p.q r,

p.Err u, p.Err g, p.Err r, p.Err i, p.Err z,

p.petroR50Err r, p.petroR90Err r, p.qErr r,

s.z, s.zErr, s.zConf

into mydb.dr3cfracdpetq from SpecOBJall s, PhotoObjall p

WHERE s.specobjid=p.specobjid

and s.zConf>0.95

and (p.primtarget & 0x00000040 > 0)

and ( ((flags & 0x8) = 0) and ((flags & 0x2) = 0) and ((flags & 0x40000) = 0))

Query used to obtain Dataset 2:

Select p.ObjID, p.ra, p.dec,

p.dered u, p.dered g, p.dered r, p.dered i, p.dered z,

p.petroR50 r, p.petroR90 r, p.fracDeV r, p.q r,

p.Err u, p.Err g, p.Err r, p.Err i, p.Err z,

p.petroR50Err r, p.petroR90Err r, p.qErr r,

s.z, s.zErr, s.zConf



– 23 –

into mydb.dr3cfracdpetq from SpecOBJall s, PhotoObjall p

WHERE s.specobjid=p.specobjid

and s.zConf>0.95

and (p.primtarget & 0x00000040 > 0)

and ( ((flags & 0x8) = 0) and ((flags & 0x2) = 0) and ((flags & 0x40000) = 0)

and ((flags & 0x10) =0) and ((flags & 0x1000)=0) and ((flags & 0x20000) = 0) )

Query used to obtain Dataset 3:

Select p.objID, p.ra, p.dec,

g.NUV MAG, g.NUV MAGERR, g.FUV MAG, g.FUV MAGERR,

p.u, p.Err u, p.g, p.Err g, p.r, p.Err r, p.i, p.Err i, p.z, p.Err z,

t.j m k20fe, t.j msig k20fe, t.h m k20fe, t.h msig k20fe, t.k m k20fe, t.k msig k20fe,

s.z, s.zErr, s.zConf

FROM TWOMASS.dbo.xsc t, BESTDR2.dbo.PhotoObjAll p, GALEXDRONE.dbo.nuvfuv

g, BESTDR2.dbo.SpecOBJall s

WHERE s.specobjid=p.specobjid

and s.zConf>0.95 and s.zWarning=0

and g.NUV MAG>-99 and g.FUV MAG>-99

and t.cc flg=’0’

and (p.primtarget & 0x00000040 > 0)

and ((flags & 0x8)=0) and ((flags & 0x2)=0) and ((flags & 0x40000)=0)

and p.objid=BESTDR2.dbo.fgetnearestobjideq(t.ra,t.dec,0.08333)

and p.objid=BESTDR2.dbo.fgetnearestobjideq(g.RA,g.DEC,0.08333)

Query used to obtain Dataset 4:

Select p.objID, p.ra, p.dec,

g.NUV MAG, g.NUV MAGERR, g.FUV MAG, g.FUV MAGERR,

p.u, p.Err u, p.g, p.Err g, p.r, p.Err r, p.i, p.Err i, p.z, p.Err z,

t.j m k20fe, t.j msig k20fe, t.h m k20fe, t.h msig k20fe, t.k m k20fe, t.k msig k20fe,

s.z, s.zErr, s.zConf

FROM TWOMASS.dbo.xsc t, BESTDR2.dbo.PhotoObjAll p, GALEXDRONE.dbo.nuvfuv

g, BESTDR2.dbo.SpecOBJall s

WHERE s.specobjid=p.specobjid

and s.zConf>0.95 and s.zWarning=0

and g.NUV MAG>-99 and g.FUV MAG>-99
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and t.cc flg=’0’

and (p.primtarget & 0x00000040 > 0)

and ( ((flags & 0x8)=0) and ((flags & 0x2)=0) and ((flags & 0x40000)=0)

and ((flags & 0x10) =0) and ((flags & 0x1000)=0) and ((flags & 0x20000) = 0) )

and p.objid=BESTDR2.dbo.fgetnearestobjideq(t.ra,t.dec,0.08333)

and p.objid=BESTDR2.dbo.fgetnearestobjideq(g.RA,g.DEC,0.08333)
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Fig. 5.— Two plots showing the five training methods applied to Datasets 3 (left) and 4

(right).
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Fig. 6.— The top panel of this figure shows the distribution of errors for 100 neural networks

on the GREAT E-Model ugriz-petro50-petro90-qr-fracdev, Dataset 2 (see Table 5). The

middle panel shows the empirical cumulative distribution function for the RMS errors for

the 100 models shown in the top panel. The bottom panel shows the probability distribution

function of the RMS error. See § 5 for more details.
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Fig. 7.— The top panel of this figure shows the distribution of errors for 100 neural networks

on the GREAT E-Model nuv-fuv-ugriz-jhk, Dataset 4 (see Table 6). The middle panel shows

the empirical cumulative distribution function for the RMS errors for the 100 models shown

in the top panel. The bottom panel shows the probability distribution function of the RMS

error. See § 5 for more details.
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Table 3: Different Photometric Redshift Techniques and Accuracies.

Method Name σRMS Dataset1 Inputs2 Source

CWW 0.0666 SDSS-EDR ugriz Csabai et al. (2003)

Bruzual-Charlot 0.0552 SDSS-EDR ugriz Csabai et al. (2003)

ClassX 0.0340 SDSS-DR2 ugriz Suchkov et al. (2005)

Polynomial 0.0318 SDSS-EDR ugriz Csabai et al. (2003)

Support Vector Machine 0.0270 SDSS-DR2 ugriz Wadadekar (2005)

Kd-tree 0.0254 SDSS-EDR ugriz Csabai et al. (2003)

Support Vector Machine 0.0230 SDSS-DR2 ugriz+r50+r90 Wadadekar (2005)

Artificial Neural Network 0.0229 SDSS-DR1 ugriz Collister & Lahav (2004)

1SDSS-EDR Early Data Release (Stoughton et al. 2002), SDSS-DR1 Data Release 1 (Abazajian et al. 2003),
SDSS-DR2 Data Release 2 (Abazajian et al. 2004)

2ugriz=5 SDSS magnitudes, r50=Petrosian 50% light radius in r band, r90=Petrosian 90% light radius in r
band.
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