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Abstract The environmental impact of aviation is enormous given the fact that
in the US alone there are nearly 6 million flights per year of commercial aircraft.
This situation has driven numerous policy and procedural measures to help develop
environmentally friendly technologies which are safe and affordable and reduce the
environmental impact of aviation. However, many of these technologies require sig-
nificant initial investment in newer aircraft fleets and modifications to existing reg-
ulations which are both long and costly enterprises. We propose to use an anomaly
detection method based on Virtual Sensors to help detect overconsumption of fuel in
aircraft which relies only on the data recorded during flight of most existing commer-
cial aircraft, thus significantly reducing the cost and complexity of implementing this
method. The Virtual Sensors developed here are ensemble-learning regression mod-
els for detecting the overconsumption of fuel based on instantaneous measurements
of the aircraft state. This approach requires no additional information about standard
operating procedures or other encoded domain knowledge. We present experimental
results on three data sets and compare five different Virtual Sensors algorithms. The
first two data sets are publicly available and consist of a simulated data set from a
flight simulator and a real-world turbine disk. We show the ability to detect anomalies
with high accuracy on these data sets. These sets contain seeded faults, meaning that
they have been deliberately injected into the system. The second data set is from real-
world fleet of 84 jet aircraft where we show the ability to detect fuel overconsumption
which can have a significant environmental and economic impact. To the best of our
knowledge, this is the first study of its kind in the aviation domain.
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1 Introduction

Although modern aircraft are more fuel efficient than ever before, they use a signifi-
cant amount of fossil fuels which account for a large percentage of the total operating
costs of a commercial airline. Some reports indicate that these costs are as high as
30% of the total expenditures for a major airline. The overall ‘carbon footprint’ of
the aviation system is substantial, although it is overshadowed by other transporta-
tion and energy production technologies in terms of its impact on the environment.
However, an improvement in the efficiency of these aircraft in terms of fuel usage can
have a significant environmental and economic benefit to many parties, including the
airline operators, airframe and engine manufacturers, and the public at large. Figure 1
shows the fuel consumption of different aircraft over a fifty year period. Expressed as
a percent reduction of the fuel consumption of the Comet 4, we can see a dramatic
reduction in engine fuel consumption as well as the aircraft fuel burn per seat. The
latter metric takes the aircraft’s passenger capacity into account. For example, the
Boeing 777–200 consumes about 40% less fuel than the Comet 4 with about 70% less
fuel consumed per seat.

Because fuel consumption represents a significant operating cost for an airline, it is
monitored and controlled very carefully through a number of procedures. These pro-
cedures essentially compare the total fuel consumed on a particular leg of a trip against
other trips which have the same origin, destination, take-off weight, make-and-model
of aircraft (and engine), flight time and durations of various phases of flight (such
as take-off, cruise, descent, and landing), and other contextual factors. If a particular
aircraft uses more fuel than expected, it may be brought in for maintenance purposes
and further investigation. As we will see later in the paper, there can be a wide degree
of variability in the overall fuel consumption for a particular aircraft on a given trip
even after taking these factors into account. This variability poses a challenge and
results in a classic signal-to-noise issue: is the observed high fuel usage on a specific
flight significant or not given the observed data?

1.1 Environmental impact of aviation

Jet engines can be a significant source of carbon emissions. A typical Boeing 747 can
carry nearly 184,000 liters of fuel on a given flight. With a conservative assumption
that 90% of the fuel is converted into carbon dioxide for a long range flight, and assum-
ing a fuel density of 2.76 kg/l of CO2, we can estimate that a single Boeing 747 can
emit as much as 457,000 kg of carbon dioxide into the high atmosphere. It is clear that
when such emissions are multiplied by the number of aircraft in world-wide operation
(estimated to be around 15,000 aircraft according to the IPCC, Penner et al. 1999) the
environmental impact is substantial. The Intergovernmental Panel on Climate Change
Special Report on Aviation and the Global Atmosphere (Penner et al. 1999) describes
the impact of these emissions at high altitude in their report, a synopsis of which is
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Fig. 1 This figure is part of the IPCC report on Aviation and the Global Atmosphere. It shows a signifi-
cant reduction in fuel consumption and Aircraft Fuel Burn per Seat as a function of time. This reflects the
continuous improvement in efficiency of both the aerodynamic and the engine designs. The capability for
increased stage lengths and operations at higher altitudes could also have been significant factors. Notice
that the most efficient aircraft in the recent years are the wide-bodies that are used primarily for international
flights and long periods of cruise at high altitude. The data are normalized with the Comet 4 in 1960 being
the base of comparison (Penner et al. 1999)

quoted here: “Aircraft emit gases and particles directly into the upper troposphere and
lower stratosphere where they have an impact on atmospheric composition. These
gases and particles alter the concentration of atmospheric greenhouse gases, includ-
ing carbon dioxide (CO2), ozone (O3), and methane (CH4); trigger formation of
condensation trails (contrails); and may increase cirrus cloudiness-all of which con-
tribute to climate change.” A study by the National Research Council (Committee on
Aeronautics Research and Technology for Environmental Compatibility 2002) indi-
cates “although aircraft fuel consumption is small relative to fuel consumption by
other sectors, aircraft emissions are of increasing concern because they are deposited
at altitudes where, with the exception of CO2, they affect the environment differently
than ground-based emissions.”

1.2 Contribution

In this paper we present a novel method to detect an anomaly in any system which has
time-series measurements of some continuous variable of interest and measurements
of related discrete and continuous variables. This general framework is applied to the
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problem of detecting anomalies such as overconsumption of fuel (also known as an
overage) in modern aircraft using data that is already measured and monitored on such
aircraft. This data, known as Flight Operational Quality Assurance (FOQA) data is
used for numerous purposes including improving safety and efficiency of commercial
and business transport aircraft. The approach we discuss here differs significantly from
the traditional approach of comparing actual fuel consumption against averages for a
given flight or aircraft. Such computations do not sufficiently control for the context of
the flight and may not reveal more subtle performance issues. The potential impact of
this work for the development of environmentally friendly technologies is significant,
because we show a methodology for detecting overages in energy consumption that
could be applied in a variety of application domains, including construction, automo-
tive, locomotive, and computing platforms.

The key question that we face is how to develop models of typical fuel consumption
given data from a set of flights. Our goal is to provide a cost-effective, scalable, and
accurate method to discover fuel overconsumption to help detect aircraft with potential
issues in fuel consumption. These issues could point to maintenance or piloting issues,
and if left unresolved, could lead to a safety issue. For example, if the control sur-
faces on an aircraft are in an improper configuration for cruise it could lead to higher
drag which could lead to an increase in fuel consumption. Aircraft rigging ages with
time and can also lead to an increase in fuel burn. Another source of increase in fuel
consumption could be due to the way the airplane is flown. It is possible that the com-
bination of control surface configurations, speed, and other engine settings could lead
to an increase in instantaneous consumption even though all systems are individually
operating in their nominal regime.

We approach this problem using a method based on ensembles of regression models.
Regression models are designed to predict the value of one continuous variable given
a set of other discrete and continuous variables. These models are used in numerous
applications including finance, the social sciences, medicine, engineering systems,
and related areas. The predictions are based on a model that is learned from training
data that can then be applied to a test data set. Using a regression model, we predict
the instantaneous fuel consumption of an aircraft given a vector of continuous and
discrete variables that are measured concurrently. 1 This input vector represents the
instantaneous state of the aircraft. The intuition behind this model is that the fuel con-
sumption may be a complex function of the state that can be learned from the data
given an appropriate regression model. An issue that arises in this procedure is that we
assume that the FOQA data used for training the models are from aircraft operating in
nominal conditions. However, it could be that some subset of the training data could
be from aircraft operating in off-nominal conditions. Throughout this text, we refer to
nominal conditions as those that are according to plan or design, in consonance with
the language used in aerospace engineering. We address this problem by requiring that
we have a large number of flights for the same make and model of aircraft for a given
city pair (origin and destination airport). The assumption that we make is that while
a subset of the data may have off nominal characteristics, the vast majority would be

1 Although this paper presents the use of a concurrent state vector, the approach presented here generalizes
to state vectors formed with information from the current time as well as past times.
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operating in a nominal condition. We believe this assumption is valid because of the
high degree of emphasis on tracking fuel consumption in modern fleets. Thus, any
anomalies detected would be present in a small minority of flights.

A key requirement of our approach is that we need an estimate of the uncertainty in
the prediction. This uncertainty estimate is used to provide bounds on the expected fuel
consumption at a moment in time. To produce these estimates we build an ensemble
of regression models. Each regression model is built off of a bootstrap sample of the
training data. The mean of these regression models is used as the prediction of the fuel
consumption, whereas the standard deviation of the predicted fuel consumptions is
used as a measure of uncertainty. The overall approach described here is called Virtual
Sensors, because we are developing an estimator of one sensor measurement (fuel con-
sumption) given other potentially nonlinearly correlated sensor measurements. This
approach is an example of an ensemble learning method where multiple models are
built on bootstrap samples to improve prediction accuracy (Breiman 1996).

We contrast this approach with simply monitoring fuel burn and computing the
total fuel burned during a flight. This approach leads to a measure of total fuel burned
but does not address the issue of whether, at a given moment during flight, the instan-
taneous fuel consumption is higher than expected.

Key contributions of this research is given below. Earlier work describing Virtual
Sensors and their applications to other domains can be found in Srivastava et al. (2005),
Way and Srivastava (2006), and Srivastava and Das (2009). In this article, we use Vir-
tual Sensors to demonstrate the detection of overconsumption of fuel and also show
that they can detect anomalies in other domains related to aviation systems through
the use of two real-world data sets. The paper has the following contributions:

1. A description of a novel application of ensemble regression techniques to detect-
ing overconsumption of energy in real-world aircraft based on instantaneous flight
data. To the best of our knowledge this is the first attempt to model instantaneous
energy consumption using data already available on aircraft. Indeed, this is a sharp
contrast to the current approach which simply measures the amount of fuel used
on a particular flight and compares that with past flights of the same make and
model of aircraft. Our approach does not require extra data, new equipment, or
costly changes to regulation or manufacturing standards.

2. A demonstration, using the Virtual Sensors technique, that it is possible that instan-
taneous fuel consumption can exceed a preset threshold while the total fuel con-
sumed on a particular flight may be well within expected bounds. While this result
may not be surprising from a statistical standpoint, it has a significant impact on
the aviation domain and its associated environmental impact. Such a result indi-
cates that although a particular flight falls within the bounds of expected fuel
consumption, it could be possible to further reduce the fuel consumption, thus
increasing efficiency and decreasing the environmental impact.

3. A case study on a real-world data set from a modern commercial fleet of 84 aircraft
covering about 40,000 flights to demonstrate the effectiveness of our approach.
Because maintenance data on these aircraft cannot be obtained due to data access
restrictions, we also demonstrate our technique on the same real-world data set
with artificially injected increases in fuel consumption in one aircraft.

123



448 A. N. Srivastava

The ensemble regression techniques that we employ build on a substantial body of
research that shows that these methods can give highly accurate predictions but also
can give a useful measure of certainty. The approach has been previously validated on
an anomaly detection problem regarding the Space Shuttle Main Engine (Matthews
and Srivastava 2010). We also provide results on two publicly available data sets.2 The
first data set, from the NASA FLTz (Oza 2010) simulator, consists of simulated data
of randomly generated circular flight paths starting from San Francisco International
Airport end ending at the same location. We show the results of this algorithm in
predicting subtle injected anomalies in the roll acceleration given other information
about the state of the aircraft. The second publicly available data set is data from a
real-world turbine disk (Abdul-Aziz et al. 2010). The data are taken from a capac-
itive probe sensor technology that measures variations in the distance between two
conductive surfaces on the turbine disk. A small crack is induced in the disk which
gives rise to an imbalance measurable at high speeds. These two data sets are used
to demonstrate the versatility of Virtual Sensors to detect anomalies. Our technique
reliably and accurately detects these anomalies.

2 Related work

Our work is based upon an extensive literature regarding regression models and ensem-
ble learning and studies that show the application of these techniques to real-world
physical systems. We apply these techniques to build Virtual Sensors for the purpose
of anomaly detection. There is a large body of research on anomaly detection methods
for continuous and discrete variables which we also reference. Furthermore there is
a significant amount of work in model-based approaches to state estimation in the
Control Systems literature. Although the Control Systems literature discusses model-
based approaches to state estimation and fault detection, in this work we assume that
the model is unknown, thus leading us to a data-driven approach. We are not aware of
any work directly comparable to the work presented here in the aviation community
for the detection of fuel consumption related anomalies. We conclude this section with
a discussion of the methods currently employed to detect fuel overconsumption.

We begin with a survey of Virtual Sensors which are nonlinear regression models
applied to the specific problem of estimating the value of one sensor measurement
given a set of other, possibly nonlinearly correlated measurements (Srivastava et al.
2005). This approach has been successfully employed in a variety of domains including
astrophysics (Way and Srivastava 2006) and detecting anomalies in the Main Propul-
sion System of the Space Shuttle (Matthews and Srivastava 2010). We note that in the
latter study, we were able to detect problems in the fuel lines of the Space Shuttle using
real data and a method similar to the one described in this paper. In the case of the
Space Shuttle, the critical issue was not overconsumption of fuel– it was the fact that
there was a crack in the fuel line that could lead to a catastrophic failure. This issue,

2 These data sets, sample code, and papers are available on our website at https://c3.ndc.nasa.gov/dashlink/
resources/.
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however, lead to an anomalous pressurization in the fuel line which can be detected
using Virtual Sensors.

Subsequent studies have employed Virtual Sensors for estimating sensor values
appropriate to vehicle tracking (Petrovskaya and Thrun 2009). In this context, sensor
representations refer to the estimated values of certain sensor measurements using
statistical regression techniques. There are numerous approaches to address linear and
nonlinear regression problems. In this paper, we focus on Gaussian Process Regres-
sion, Bagged Neural Networks, and a regularized linear method known as Elastic Nets.
A key issue that arises in applying kernel-based models such as Gaussian Processes
is that the scalability of the regression method becomes critical. Collobert and Bengio
(2001), Chandola and Vatsavai (2010), and Foster et al. (2009) provide directions
to increase the scalability of kernel-based techniques for regression. Although kernel
methods can be preferable for some regression problems, there are numerous other
ways to perform regression which are surveyed well elsewhere (Seber and Wild 1989).

Although it is not necessary to build an ensemble of regression functions for Vir-
tual Sensors, we have found it advantageous to do so to improve prediction accuracy
and model stability across different data samples. In this work we perform bagging, or
bootstrap-aggregation, with our models (Breiman 1996). This allows us to measure the
confidence in the predictions based on the variation of the predictions of the ensemble.

Once a Virtual Sensor is estimated for anomaly detection, one measures the esti-
mation error between the actual sensor value and the predicted sensor value from the
Virtual Sensor. If the estimation error is high, it can indicate a change in the underlying
system dynamics. This is the standard approach taken in the Control Systems commu-
nity and can be directly transfered to this formulation. This approach of estimating a
Virtual Sensor is a supervised learning approach and the anomaly detection is a direct
result of inspection of the residuals. It is possible to perform unsupervised learning
to discover anomalies. In fact, for many applications this is the method of choice. An
excellent compendium on the subject can be found at Chandola et al. (2009). These
approaches often build internal models of nominal (or normal) behavior and then com-
pare the observed behavior against the internal model. An anomaly is detected if the
deviation is larger than a pre-specified value.

The problem of detecting increases in fuel consumption on jet engines is not new.
Some early reports on this problem domain written by engine manufacturers such as
GE Wulf (1980) and Sallee (1980) describe an approach of studying fuel consumption
on aircraft that is still used today. The idea is to take snapshots of the fuel consump-
tion during the cruise phase of the flight and compare it with baseline performance.
These studies reveal that jet engines can experience a reduction in efficiency of about
2% over 4000 hours of operation due to engine degradation and wear. In the GE
report (Wulf 1980) a snapshot of performance during cruise shows a linear increase
in fuel consumption with flight cycles as well as a corresponding linear increase in
engine exhaust gas temperature for several different engine models. With appropriate
condition-based maintenance procedures they indicate in their report that in 1980, “this
represents a potential reduction in fuel consumption of 26 million gallons and savings
to the airlines of 16.6 million dollars based on projected flight hours.” Similarly, the
Pratt and Whitney report indicates that the engine deterioration can be as high as 3.8%
over 2000 engine cycles with a corresponding increase in engine exhaust temperature
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from 5 to 33 degrees Celsius. The combination of higher engine exhaust temperatures
and higher fuel consumption can be indicative of engine degradation.

While it is clear that monitoring engine degradation over time can lead to an im-
proved maintenance cycle, thereby reducing the operational costs and reducing the
environmental impact, such studies are performed over very long periods of time with
data captured at very low frequency. Many modern commercial aircraft are equipped
with flight data recorders which capture data at 1 Hz from potentially hundreds of
sources. These data comprise the so-called Flight Operational Quality Assurance
(FOQA) programs at major carriers and form the basis of the studies conducted in
this paper.

3 Overview of the approach

3.1 System architecture

Figure 2 shows the system architecture that we propose for anomaly detection from
heterogeneous data sources as part of an overall approach to improving the safety
and efficiency of a complex system such as an aircraft (Statler 2007). Although the
primary goal of this work is to show the use of Virtual Sensors in discovering fuel
overconsumption, it also has an eventual safety benefit. In some cases the source of
the overage may be due to a maintenance issue that could lead to a safety problem. The
architecture shows the flow of data from multiple, heterogeneous sources through a
comparison with performance standards. These performance standards could be drawn
from a standard operating procedure (SOP) or from a learning model such as Virtual
Sensors. The identification of potential hazards (of which a fuel overage may be a
subset) can be made either autonomously or with the aid of a human in the Evaluation
phase.

In some cases, an intervention strategy may need to be developed. For example, in
the case of a fuel overage, it may be that an engine needs to be exchanged on a par-
ticular aircraft; in other scenarios, the source of the overage may be due to improper
adjustment of the flight control surfaces. These considerations would be made by
safety and maintenance experts perhaps aided by models and simulations. The result-
ing intervention can be deployed in the field as determined by the experts as shown in
the Intervention phase. Virtual sensors would be one approach to comparing observed
data against performance standards. They may also be used in the Evaluation phase,
where we perform statistical analysis to determine the frequency and severity of an
event such as a fuel overage.

3.2 Notation

This section outlines the notation used for the remainder of this paper. The bold-faced
variables correspond to vector quantities, whereas the non-bold correspond to scalar
quantities. For a Virtual Sensors model, we assume that the inputs and outputs are
observed quantities and that the system state is also observable.
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Fig. 2 This diagram shows a conceptual architecture for the use of Virtual Sensors and other anomaly
detection methods in the context of improved maintenance with the end goal of improving aircraft safety.
Although methods to reduce fuel consumption can have direct environmental and economic impact, it can
also have potential public safety benefits (Statler 2007). Virtual sensors can play multiple roles in this
conceptual architecture, both at the identification phase and the evaluation phase

– Γ corresponds to a function that maps the previous hidden state to the next hidden
state.

– ht corresponds to the value of a hidden state at time t . The hidden state can represent
different modes of the data generating process.

– Ψ corresponds to a potentially nonlinear function that gives the current observed
state of the data generating process given the past observed state, the past hidden
variable, and the current inputs to the system.

– xt gives the N -dimensional current observed state of the system.
– ut gives the current input to the system.
– Ω maps the current observed state to the observed output of the system. In this

work we assume that this function is the identity map.
– εt represents measurement noise.
– yt represents the observed output of the system. For the purposes of this study it

refers to the fuel consumed at time t .
– t corresponds to the time index.
– c represents the gross, time independent factors of the flight such as the city pairs,

the make and model of the aircraft, etc.
– P(Y |c) is the distribution of total fuel consumed given the flight context.
– P(yt |xt , c, θ) is the distribution of the fuel consumed at time t given the inputs,

the flight context, and the model parameters.
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– α is a threshold multiplier on the number of standard deviations that the observed
value must be greater than the mean prediction of the ensemble of regression
models.

– Variables with a star superscript, such as h∗
t−1 are variables that contain a preset

number of lagged values of the time series.

3.3 Discovering fuel overconsumption: a comparison with current methods

We approach the challenge of discovering overconsumption of fuel, or an overage,
as an anomaly detection problem in a multi-dimensional multivariate time series. We
detect anomalies in a scalar variable given multivariate data series containing both
discrete and continuous channels. We assume that we are given data from a data
generating process that can be functionally described by the following equations:

ht = Γ (h∗
t−1) (1)

xt = Ψ (x∗
t−1, h∗

t , ut , c) (2)

yt = Ω(xt ) + εt (3)

We assume that the function Γ determining the evolution of the hidden system state
ht is unknown. In our fuel consumption study, we assume that there are two possible
values of ht : either the system is in a nominal state with respect to fuel consumption
or it is in an off-nominal (high) state. We also assume that the function Ψ , which
governs the evolution of the continuous state vector is also unknown. We assume that
the vector x is an N dimensional observed state vector. The quantity ut is the observed
system input (such as throttle commands from the pilot), and yt is the observed fuel
consumed at time t . We model the measurement noise as N (0, σ 2). We assume that
we are given the set (U ,X ,Y) for a fleet of aircraft covering many legs and different
operating conditions. In this paper, we do not distinguish between the exogeneous
inputs U and the state variables X . Thus, for the remainder of this paper we lump the
input and the state variables together into X to simplify the notation. The variable c
represents the gross, time-independent, factors of the flight such as the city pairs, the
make and model of the aircraft, the pilots and flight crew, etc.

The approach used currently by the aviation community compares the total fuel
consumed on a flight Y against a distribution P(Y |c) where c is the flight context and
Y = ∑

t yt . If Y > EP (P(Y |c)) + τ where τ is a distribution dependent and time
independent threshold (such as a fixed multiple of standard deviations), the aviation
expert would indicate that the flight had a significant overage.

Our approach differs from this procedure as follows. Rather than treating the entire
flight as a monolithic entity, we take advantage of the fact that at each instant in time
(about 1 Hz on the aircraft under study) a data recording system is storing about 84
parameters of information, including information about instantaneous fuel usage in
the engines, navigational information, wind speed and direction, altitude, attitude, and
other positional information, and various latitudinal and longitudinal accelerations.
We attempt to model P(yt |xt , c, θ) where θ are the parameters of our model. Our
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Fig. 3 This figure shows the variability in fuel consumption for a real-world commercial jet aircraft for
a given city pair. The data have been standardized to have zero mean and unit variance to maintain the
confidentiality of the data

procedure is then to estimate the fuel consumed at time t against P(yt |xt , c, θ) and
set a flag if:

yt > EP (P(yt |xt , c, θ)) + α
√

V arP (P(yt |xt , c, θ)) (4)

where α is a constant threshold multiplier selected based on a desired detection rate
and other criteria. If, for a given flight of duration T the total number of times the
anomaly flag is activated is large, we indicate that there is a potential anomaly on the
flight with respect to fuel consumption. For a two-sided anomaly, we simply modify
Eq. 4 so that |yt − EP (P(yt |xt , c, θ))| must be less than the specified threshold.

Figure 3 shows the variability in fuel consumption in the form of a histogram for
one city pair. The data have been standardized to have zero mean and unit variance to
give an idea of the degree of total variation in the fuel consumed and also to protect
proprietary information. Notice that the unconditional distribution of fuel consump-
tion varies by as much as 4 standard deviations thus making it difficult to determine
which flights consumed more fuel than expected for the given operating conditions.
This is the aim of our study.

Thus, although there is variability in fuel consumption, we hypothesize that given
these contextual factors, there will still be a small minority of aircraft that are con-
suming more fuel than warranted in a particular time dependent flight context. In
order to test this hypothesis, we must model the time-dependent conditional distribu-
tion P(yt |xt , c, θ) rather than the time-independent conditional distribution P(Y |c)
shown in Fig. 3.
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The next section discusses Virtual Sensors algorithms. We then discuss the specific
requirement of estimating conditional probability distributions and illustrate how the
ensemble methods address this requirement. Having established the algorithms we
discuss the specific case study of estimating the fuel consumption of aircraft in real-
world conditions. We then discuss our experimental results and validate the results
using various statistical tests as well as injected anomalies. We conclude the paper by
discussing the potential impact this approach can have on improving the efficiency of
fleets of aircraft, the subsequent reduction in the carbon footprint by addressing these
inefficiencies, and describe plans for future research.

4 Virtual sensor algorithms for anomaly detection

This section begins with a discussion of the Virtual Sensor algorithm and then describes
its use with two specific regression functions: the Elastic Net and Gaussian Process
regression with a new variant known as stable GP.

4.1 Virtual sensors

Virtual Sensors algorithms are designed to create an estimator for a quantity yt given
other correlated information xt and ut . In the simplest case, this can be accomplished
by building a regression model to estimate the desired quantity. In some cases such as
the one under consideration in this paper we need to not only estimate yt but also obtain
a local confidence measure on the prediction of yt . Regions in the input-output space
where there is high uncertainty in the prediction need to be characterized differently
than regions where there is low uncertainty in the prediction. For example, in this case
study, during the climb phase of flight there is a higher uncertainty in the prediction
of the fuel consumption than in the cruise phase of the flight. Rather than encoding
the phase-of-flight in the model we instead have the algorithm discover these different
operating regimes using data alone.

The uncertainty in the estimate can be characterized by V arP (P(yt |xt , θ)), assum-
ing that we have an efficient method to compute this quantity. In the actual compu-
tations we use the standard-deviation of this quantity, but discuss the variance of the
estimator to maintain the consistency of the discussion. Thus, rather than building a
single regression model, we are building an ensemble using the bootstrap aggregation
technique of Breiman (1996) known as bagging. With bagged predictors, we sample
the data set m times with replacement and build m models. The mean of these pre-
dictions becomes our estimate of EP (P(yt |xt , θ)) and the standard deviation of the
predictions becomes V arP (P(yt |xt , θ)). We assume that we have chosen a particu-
lar flight context and drop the associated c variable from further discussion. These
time-dependent quantities form the basis of our anomaly detection approach. Since
the residuals are assumed to be Gaussian we choose a detection envelope of three
standard deviations about the predicted mean to be the anomaly threshold, although
on two of our examples we do an exhaustive study of the accuracy of the model as a
function of the number of standard deviations used for the detection envelope.
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We contrast the measure V arP (P(yt |xt , θ)) with a measure solely obtained from
the variance of the fuel consumed across multiple flights. The variance of fuel con-
sumed across multiple flights is well known (see Fig. 3) and can easily be measured.
In our measure of variance we compute the uncertainty in the estimate of the fuel
consumption at a specific point in time during the flight of a single aircraft.

The base regressors used in this study were neural networks (Nabney 2001), regres-
sion trees using Matlab [15], Elastic Nets which are generalized linear models with l1
and l2 norms (Hastie et al. 2009), and Gaussian Processes (Rasmussen and Williams
2006). We begin by reviewing the likelihood function of the model and then discuss the
Gaussian Process formulation and show that this method also models the appropriate
conditional distribution. Suppose that we are taking a total of m bootstrap samples
from our training data set. For bootstrap sample k, a target, and an input variable, we
assume that we have a Gaussian noise distribution in accordance with Eq. 3:

P(yt |xt , θ) = 1√
2πσ 2

exp

(

− (yt − ŷt (xt , θ))2

2πσ 2

)

(5)

where ŷt (xt , θ) is the prediction of the model given the data input xt and the model
parameters θ . Note that in this equation, we have suppressed the use of k in this nota-
tion. However, we note that the model parameters, the inputs, the target, and the model
prediction all depend on the bootstrap sample k. In this formulation, ŷt (xt , θ) is the
estimate of the mean of the distribution for the current bootstrap sample. Thus, as we
draw further bootstrap samples the distribution of ŷt (xt , θ) will begin approximating
the joint distribution of the inputs and outputs as discussed in Breiman (1996). For a
given bootstrap sample, if we assume independence of the samples we can obtain the
standard likelihood function whose negative logarithm leads to the familiar squared-
error cost function.

L =
T∏

t=1

P(yt |xt , θ) (6)

=
T∏

t=1

1√
2πσ 2

exp

(

− (y − ŷt (xt , θ))2

2πσ 2

)

(7)

Taking the negative logarithm and computing the average log-likelihood, we obtain
the per-time-step cost function:

C = 1

T

T∑

t=1

(

− (y − ŷt (xt , θ))2

2πσ 2

)

+ q (8)

where q is a constant term with respect to the optimization parameters. Optimization
of this cost function is model-dependent and results in a regression function g(Xk, θk).
In this paper we used neural networks, regression trees, and linear regression models
as the regression function (Hastie et al. 2001). Once we obtain the estimates for a
given bootstrap sample, the procedure is repeated until m models have been built.
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The mean and variance of the predictive distribution P(yt |xt , θ) is formed by taking
the mean and variance of the ensemble of predictions from the m models:

EP (P(yt |xt , θ)) = 1

m

m∑

k=1

g(xt , θk) (9)

V arP (P(yt |xt , θ)) = 1

m

m∑

k=1

(g(xt , θk) − EP (P(yt |xt , θ)))2 (10)

Finally, we perform anomaly detection by computing the fraction of time per flight
where the observed fuel flow yt is greater than α

√
V arP . In this manner, each flight is

given a score, and the flights are sorted so that the flights with the highest fraction of
time where the observed fuel flow is higher than the model expects are at the top of the
list. Algorithm 1 gives the entire Virtual Sensors for Anomaly Detection Algorithm.
We contrast the Virtual Sensors approach with one in which we simply perform anom-
aly detection on continuous time series by determining when the time series crosses
a pre-defined threshold. In that case, the fixed threshold is applied to a single time
series without regard to other inputs. While that approach is valid for some applica-
tions the Virtual Sensors approach models the dependency between input signals and
a pre-specified target and has thresholds that adapt to the underlying uncertainty in
the model predictions.

Algorithm 1: Virtual Sensors for Anomaly Detection
Input: (X , Y,C, α, m, n), representing state variables, the target variable, the cost function for

minimization, a multiplier on the number of standard deviations to use as the anomaly
detection threshold, the number of models, the number of bootstrap samples, respectively.

Output: Sorted list of anomalies List
Initialization: Standardize inputs and outputs to have zero mean and unit variance;
begin

for k = 1 to m do
Draw bootstrap replicate with n samples: (Xk ,Yk )

minimize cost function C to obtain estimate: Ŷk = G(Xk , θk );
Compute mean and standard deviation of the estimates for the m models;
Compute the percentage of the test data for a given flight that is larger than the mean + α

standard deviations;
Return rank ordered list List of anomalous flights.

end

4.2 Virtual sensors with elastic nets

Since the base regression algorithms for neural networks and regression trees are well-
known, we refer the interested reader to Hastie et al. (2009), Friedman et al. (2010),
and Friedman et al. (2007) for more information. In this section we explore Elastic
Nets, which are a form of linear regression with l1 and l2 regularization performed
simultaneously (Friedman et al. 2007). We discuss Gaussian Process Regression in
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the next section and compare that method with Elastic Nets and the other models
discussed in this paper.

Due to the relatively large number of input variables in our model and the fact that
there is a high degree of intercorrelation between the input variables we chose to use
Elastic Nets as a method for simultaneously performing variable selection and regres-
sion.3 They also offer the advantage of being highly scalable compared with the other
methods tested. The Elastic Net is a generalized linear regression model where we
assume that E(yt |xt ) = β0 + xT

t β is the regression function. Assuming that x ∈ R
p,

we perform the following minimization as discussed in Friedman et al. (2007):

C = min
β0,β

(
1

2T

T∑

t=1

(yt − β0 − xT
t β)2 + λQγ (β)

)

(11)

where

Qγ (β) = (1 − γ )
1

2
||β||2l2 + γ ||β||l1 (12)

=
p∑

j=1

(1 − γ )
1

2
β2

j + γ |β| j (13)

This cost function has two components that can be traded off against each other by
setting the parameter γ . When γ = 0, this results in ridge regression, and γ = 1
results in lasso regression. Ridge regression can help in situations with high collinear-
ity, and lasso regression can be a form of variable selection. Intermediate values of this
parameter allow a tradeoff between these two extremes. Friedman et al. (2007) show
that this cost function yields a model that performs variable selection even in situa-
tions where the input variables are highly correlated. The authors go on to describe an
extremely efficient method of performing the optimization above using a coordinate
descent method. The interested reader is referred to their paper for more information.
In the study discussed here, we used the Elastic Net code (Hastie et al. 2009) available
on their website.

The assumptions behind this model are highly applicable to the study discussed
in this paper, and especially for many engineering systems where one would want to
employ Virtual Sensors. Engineering systems often have sensors with built-in redun-
dancy as well as an associated control system; as such, one would expect that the
sensors and output variables have moderate to high degrees of correlation. In some
applications the number of variables may be large based on the complexity of the
system. Thus, Elastic Nets provide several unique capabilities which we employ in
this study.

3 We note that the typical situation where this method is used is where p>>T.
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4.3 Virtual sensors with gaussian process regression

The fourth approach we explored in this paper is to use Gaussian Process Regression
(Rasmussen and Williams 2006) as the base model for Virtual Sensors. GPs predict the
mean of the conditional distribution and also provide a principled way of estimating
the variance of the conditional distribution. We briefly review the mathematics of the
GP and tie it to our previous discussion regarding the conditional distribution of the
target given the inputs, following the arguments given in Rasmussen and Williams
(2006). Equation 5 gives the likelihood of the target given the inputs and the model
parameters. For simplicity, for a given bootstrap sample if we assume that we have a
linear model, i.e., ŷt (xt , θ) = xT

t θ and assume that the time samples are independent,
we find that the conditional distribution is multivariate Gaussian as shown in the like-
lihood function in Eq. 7. The key step that occurs in a GP is that we also assume a
prior distribution on the weights of the model θ that assumes a Gaussian distribution
with zero mean and a covariance matrix �θ . This matrix is of size p × p and, through
the use of Bayes Rule, we obtain the following joint distribution of the weights given
the inputs and target:

p(θ |X, y) = N

(
1

σ 2 A−1 X y, A−1
)

(14)

where A = 1
σ 2

(
X T

) + �−1
θ . When a new input vector xt is given, the predictive

distribution can be obtained by averaging over all model parameters weighted by their
posterior probability. This gives rise to the following two equations for the predictive
distribution for an input xt as shown in Rasmussen and Williams (2006):

P
(
ŷt |xt , X, y

) =
∫

p(ŷt |xt , θ)p(θ |X, y)dθ (15)

= N

(
1

σ 2 xt A−1 X y, xt A−1x
)

(16)

This results in a predictive distribution that is no longer a function of the model param-
eters, which is, in a sense, the best estimate of the distribution assuming the Gaussian
prior on the model weights. Rasmussen shows that this process can be generalized
to nonlinear models in the input space through the use of the kernel trick. We note
in passing that Gaussian Process Regression requires the inversion of a large matrix
which can lead to computational and numerical stability problems. Recent results from
Foster et al. (2009), known as stable GP, show a method to perform this computation
efficiently with high numerical stability and similar or better performance than the
standard method. We test a standard GP implementation and stable GP in this paper
as the fifth regression method.

As in the case for the other models, we perform bootstrapping on m models and then
average the resulting estimates of the mean of the predictive distribution together. In
related work, the estimated variances are added together along with a term that includes
the empirical mean squared error as discussed in Chen and Ren (2009). However, to
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maintain our ability to compare performance across algorithms, we compute the uncer-
tainty in the estimate for the GP and stable GP algorithms in the same manner as for
the other algorithms.

Real-world applications may generate a significant amount of data for Virtual
Sensors. For example, we are in the process of obtaining data from an airline with
nearly 175,000 flights of about 100 aircraft taken over a 2 year period with approx-
imately 100 recorded parameters taken at 1 Hz. This will amount to nearly 1.5TB
of data. Given that major air carriers may have as many as 3,000 flights a day the
data volumes are growing at an extremely fast pace. It is necessary to analyze this
data in a timely fashion if we are to detect and address anomalies as they arise in
the system. Some of these anomalies may be regarding safety issues and others may
point to issues that have an economic impact. The Virtual Sensors method depends on
bagging, which is highly scalable as noted by its inventor Leo Breiman, “…bagging
is almost a dream procedure for parallel computing. The construction of a predictor
on each L{B} [bootstrap sample] proceeds with no communication necessary from
the other CPU’s” (Breiman 1996). We also note that the memory requirements for the
method, particularly when the Elastic Nets are used, is relatively small. The associated
convex optimization problem has only p parameters, and the summation eliminates
the requirement for storing the entire data set in memory.

Based on the algorithms described in the previous sections, we now turn our atten-
tion to using Virtual Sensors to detect anomalies on two publicly available data sets
and implementing Virtual Sensors on real-world data obtained from an airline. 4 The
next section discusses the data sets used, their preparation, the experimental set up,
and the results.

5 Data

We study Virtual Sensors for anomaly detection on three data sets: one public data set
from the FLTz flight simulator, one from a real-world turbine disk, and a proprietary
data set. The proprietary data set is from a fleet of 84 jet aircraft from a US-based
carrier.

5.1 FLTz simulator data

The data set was obtained by generating 100 flights with varying flight conditions in
the FLTz simulator. These lead to different altitudes, Mach numbers, and turbulences.
The turbulence levels vary from none to mild and the empirical maximum and min-
imum were computed and rounded before picking the normalization ranges. Table 1
shows the list of parameters as well as a justification for the range values given which
is given in the Comments column. The range values were used for normalization in

4 We cannot divulge the name of the airline or the data itself due to the agreement between NASA and
the carrier. The data are normalized to zero mean and unit variance to help in computations and to protect
information that could reveal the data source. We also do not state the city pairs we studied for the same
reasons.
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some studies. Note that Parameters 1–19 are inputs and 20–25 are outputs. Parameter
26 is the mass used in a varying mass model that was used in related work (Chu et al.
2010). The FLTz simulator does not provide a value for fuel consumption, we show the
same approach for detecting anomalies in the roll-acceleration, thereby demonstrating
that the Virtual Sensors method is not specific to a single application. We injected a
bias in the form of a linear ramp function in the data stream for the roll acceleration
that increases from 0 to 0.1 over about 100 flights. This represents a change of 20% of
the range of the roll acceleration over 100 flights. The algorithm was set up to predict
the roll acceleration given the other input information shown in Table 1 under both
no turbulence and high turbulence settings. A training data set was prepared using
100 flights with no injected fault and two test data sets were prepared (one for no
turbulence and one for high turbulence) using the injected fault data. The mean and
standard deviation of the training data set was used to standardize the training and the
test data sets.

5.2 Turbine engine disk spin test data

This data set is taken from a real-world experiment on a spinning metallic engine disk.
In the experimental setup, researchers took data under three configurations using a
capacitive sensor probe. The first condition represented nominal behavior in which a
disk with no known defects was tested at 3000, 4000, and 5000 revolutions per minute
(rpm). The capacitive sensors measured the variation in the blade-to-edge clearance on
32 blades (Abdul-Aziz et al. 2010). The algorithm was set up to predict the variation in
blade 7 given the variations measured in the remaining 31 blades and the disk speed at
3000, 4000, and 5000 rpm. The nominal data set was used to train the algorithm and it
was tested on data sets with a small notch and a large notch deliberately placed in the
disk. The mean and standard deviation of the training data set was used to standardize
the training and the test data set.

5.3 Real-world aircraft flight and fuel consumption data

The proprietary data set we obtained is from real-world flights of modern passenger
aircraft. We obtained 1938 flights of data from a US-based carrier taken during the
period from 2004–2005. This data includes over 80 parameters taken at a 1 Hz sam-
pling rate for the duration of the flight. Based on a discussion with two aviation experts,
we narrowed the number of variables down to 35. These included variables such as:
Altitude, Acceleration Load Factor, Lateral Acceleration, Longitudinal Acceleration,
N1 (low compressor speed) and N2 (high compressor speed) for both aircraft engines,
Throttle Position for both engines, Airspeed, Pitch Angle, Roll Angle, Vertical Speed
(based on inertial measurement), Flap Positions, and Air Temperatures. Although we
could have included all 80 parameters in the model, many of them are clearly unre-
lated and were discarded to simplify the model training. Each flight has a recorded tail
number which is an identifier of the plane itself. We do not know when specific tail
numbers may have had engine changes or changes in the engine configuration. How-
ever, previous studies of Virtual Sensors on the Space Shuttle Main Engine have shown
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Table 1 This table shows the inputs and outputs of the FLTz simulator (Oza 2010) along with the units
and range of the data values

Parameter Range Units Comments

1. Aileron [−0.5, 0.0] degrees Mild turbulence data

2. Differential aileron [−5.0, 5.0] degrees Mild turbulence data

3. Elevator [−2.0, 2.0] degrees Mild turbulence data

4. Rudder [−5.0, 5.0] degrees Mild turbulence data

5. Stabilizer [−2.0,−1.0] degrees Mild turbulence data

6. Roll angle [−0.1, 0.1] radians About 5◦; more in strong turb.

7. Yaw angle [−3.0, 3.0] radians Relative to earth-axis, between [−π, π ]
8. Pitch angle [0.0, 0.05] radians Plane doesn’t pitch much in cruise

9. Angle-of-attack [0.0, 0.05] radians Greater than 0; steady in cruise

10. Sideslip angle [−0.02, 0.02] radians About 1◦; more in strong turb.

11. Mach number [0.7, 0.9] – Less than 1; range simulation

12. Dynamic pressure [200, 300] Pascals Approx. min, max Mach

13. Engine thrust [20000, 33000] lbs Mild turbulence data

14. Long. velocity [700, 900] ft / s Mild turbulence data

15. Lat. velocity [−10, 10] ft / s Mild turbulence data

16. Vertical velocity [0.0, 40] ft / s Mild turbulence data

17. Roll rate [−0.1, 0.1] rad / s Mild turbulence data

18. Pitch rate [−0.005, 0.005] rad / s Mild turbulence data

19. Yaw rate [−0.01, 0.01] rad / s Mild turbulence data

20. Forward accel. [−0.5, 0.5] ft / s2 Mild turbulence data

21. Lateral accel. [−10, 10] ft / s2 Mild turbulence data

22. Vertical accel. [−10, 10] ft / s2 Mild turbulence data

23. Roll accel. [−0.25, 0.25] rad / s2 Mild turbulence data

24. Pitch accel. [−0.05, 0.05] rad / s2 Mild turbulence data

25. Yaw accel. [−0.05, 0.05] rad / s2 Mild turbulence data

26. Mass [4680, 5800] slugs Simulation setup

The comments give justifications for the range values. Parameters 1–19 are inputs and 20–25 are outputs.
Parameter 26 is the mass used in a varying mass model. This table is copied with permission from the
authors of Chu et al. (2010)

that the method can reveal faults and also different engine configurations (Matthews
and Srivastava 2010). There are 84 tail numbers in our data set for the chosen city
pairs, which refers to an origin and destination pair of cities. The true airspeed took
into account the aircraft heading and the wind speed and direction.

The data were divided into a training set for one city pair A → B, and then two test
sets B → A and B → C . This represents the worst case scenario with respect to the
algorithm, since the algorithm is being tested on flight directions and city pairs that do
not overlap with the training data. We standardized each training bootstrap replicate to
have zero mean and unit variance. For this proof-of-concept study, we chose to develop
our models by training data on flights between a city pair (say, A → B) and testing
on the reverse trip, B → A, as well as another trip with the same origination airport
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B → C. We chose this experimental design for several reasons. First, we hypothe-
sized that the context of a flight from one city to another, when taken over a year,
should constitute a reasonable set of flight events: weather delays, ground issues, air
traffic control issues, etc. Since the jet stream plays a critical role in fuel consumption
(because the jet stream can ’push’ the aircraft forward if its wind direction is in the
same direction as the plane’s flight path), we also hypothesized that the worst-case
scenario would be for us to train on data taken from one direction and then test on the
other direction. If the model incorrectly captures the relationship between the wind-
speed, its direction, and flight path, that would result in a high root-mean-squared
(RMS) error thus invalidating the model. Our results indicate, however, that we are
able to obtain low RMS errors on the test set. The RMS errors we observed vary from
0.34 to 0.88 with the standardized test set.

For each flight, we selected the cruise phase of flight as the period for model training
and testing. The selection of the cruise phase avoids variability during take-offs and
landings that are due to city-specific and, possibly, time specific air traffic patterns. We
defined the cruise-phase of flight as the 1 hour and 40 minutes duration from the time
after the landing gear are retracted. Because the data are sampled at a high frequency
compared with the rate of fuel consumption and airplane dynamics, we decimated the
input and output time series by a factor of 10. Some flights were discarded due to bad
data or insufficient data due to recording or other errors. In the end, we had about
658 flights for training and about 1280 flights for testing (including both legs for each
city pair). 5 Because we do not have data regarding overages in fuel consumption, we
chose to inject one tail number which had progressively higher fuel consumption with
time. This tail number was generated by taking a tail number from our data set and
artificially increasing its fuel consumption linearly by about 5% per flight. The first
flight had a fuel consumption of about 90% of the average fuel consumption for the
city pair.

During the model building process, the training data were divided into 22 sets of
approximately 30 flights each. For each set of 30 flights a 90% sample was drawn
three times with replacement. This resulted in 66 models being generated for training.
We tested different methods of performing the bootstrap sampling and found that our
results did not vary significantly with different configurations. The models used in this
study were neural networks (Nabney 2001), regression trees from Matlab, generalized
linear models with L1 norm (Hastie et al. 2009), Gaussian Processes (Rasmussen and
Williams 2006) and stable GP (Foster et al. 2009). The means and variances of the
output of the regression functions were combined as discussed earlier. The regression
functions are set up to predict the combined fuel consumption in both engines as a
function of the inputs described above.

6 Experimental results

The discussion of the experimental results is divided into three sections. The first sec-
tion overviews the results for applying Virtual Sensors to detect anomalies in the roll

5 We give approximate numbers of flights because some flights were discarded due to bad data.
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acceleration of an aircraft using data from a flight simulator. The second section gives
the results for applying Virtual Sensors to detect anomalies in a real-world data set
from a turbine disk spin test, and the final section gives the results of detecting fuel
overconsumption anomalies.

6.1 Results for FLTz simulated data

The FLTz data set has a single training set and two test sets. The training set has no
turbulence and no faults injected, whereas the test sets have a fault injected in the
roll acceleration the form of a ramp function under both no-turbulence and turbulence
settings. The added turbulence increases the difficulty of detecting the fault in the roll
acceleration and provides for additional validation of the methods described here.

Figure 4 shows the results of the Virtual Sensors method in detecting faults in the roll
acceleration for all five algorithms: the regression tree (tree), Elastic Network (glm),
neural network (nnet), Gaussian Process (gp), and stable Gaussian Process (stable GP)
regression methods. The curves show the area under the receiver operator character-
istic (ROC) curve as a function of the detection threshold multiplier α described in
Eq. 4. The left side of the figure shows the results for the case with no turbulence while
the right side of the figure shows the results for the high turbulence case. A perfect
algorithm would have an area of one for some value of detection threshold multiplier.
We can see that all algorithms except for the Elastic Net approach this value in the
no-turbulence case. The performance of the Elastic Net as shown in this figure is as
expected since this linear model will have low variability across bootstrap samples in
low-noise environments such as the one in this case. Thus, its variation in predictions
would be smaller than other models, requiring a higher detection threshold to achieve
the same area under ROC curve as for other algorithms. The detection area under the
ROC curve increases steadily for the Elastic Net as a function of threshold multiplier.
For the high turbulence case, the maximum area of the ROC curve is 0.8, which is less
than the case with no turbulence as expected. The algorithms perform similarly with
respect to each other for the high turbulence and the no turbulence settings. Simon
(2010) shows the development of a three-dimensional ROC curve for simultaneously
detecting and diagnosing faults. This innovation can be applied in the event that we
have additional causal information regarding the faults.

While this example is not directly related to detecting overconsumption of fuel, it
is included to demonstrate the effectiveness of the proposed method on a related prob-
lem in both no turbulence and high turbulence environments. The results show that the
approach is robust to noise and can achieve high detection rates in noisy environments.
Further discussion of this data set and other approaches to anomaly detection on this
set are given in Chu et al. (2010).

6.2 Results for the turbine engine disk spin test

The results for the turbine engine disk spin test data are shown in Fig. 5. As in the
case of the FLTz simulator data, we know the times during the test at which the faults
are injected, thereby giving us the ability to construct ROC curves. Figure 5 shows
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Fig. 4 This figure shows the area under the ROC curve as a function of the threshold multiplier α described
in Eq. 4. The left panel shows the area under the ROC curve for the no turbulence setting, whereas the right
panel shows the area under the ROC curve for the setting with high turbulence. The figures indicate that most
algorithms perform well on this task for both settings. The glm algorithm (Elastic Net) shows performance
increasing as a function of threshold multiplier as expected

the area under the ROC curve for the five regression methods as a function of the
threshold multiplier α discussed in Eq. 4. The algorithms detect the anomalies in the
data very well, with over 90% area under the ROC curve captured by the GP for a
large interval of the threshold multiplier. These results show that in real-world noise
environments with realistic seeded faults the Virtual Sensors method described here
can detect anomalies with high accuracy. Other work (Abdul-Aziz et al. 2010) shows
the use of unsupervised anomaly detection methods to detect these anomalies. As in
the case of the FLTz simulator, this example is not directly related to overconsump-
tion of fuel but is included to show the versatility of the proposed method on publicly
available data. We turn our attention in the next section to the problem of detecting
overconsumption of fuel on real-world aircraft.

6.3 Results for detecting overconsumption of fuel consumption in real aircraft

In this section we discuss the results for detecting overconsumption of fuel on real-
world aircraft. Because we do not have validated data that show the onset of anomalies
or any other indication of overconsumption we cannot present the area under ROC
curves as a metric for the validity of the results. Instead we show the internal consis-
tency of the results for different algorithms and compute the probability of the degree
of observed consistency using a Monte-Carlo simulation.

In order to test the amount of overfitting occurring in the models, we did one study
in which we trained on the data from City Pair A → B and tested on the same city pair
in the same direction. We used 50% of the data for training and the remaining 50% of
the data for testing. We computed the normalized root mean squared error (NRMSE)
between the predictions and the actual values of fuel flow for the training data set and
the testing data set. The NRMSE is defined as the root mean squared error divided by
the standard deviation of the actual value. We found that the ratio of the training to
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Fig. 5 This figure shows the area under the ROC curve as a function of the threshold multiplier α described
in Eq. 4. Each curve represents the performance of a different regression method on detecting anomalies in
a turbine engine disk spin test. The performance of all algorithms is acceptable, with the best performance
achieved by the Gaussian Process regression method. This method has a high accuracy for a large interval
of the threshold multiplier

test NRMSE varied consistently between 85–90% across all the four models tested,
thus indicating a slight amount of overfitting.

Once the Virtual Sensors were trained on the data from City Pair A → B, we tested
them on the hold-out data set for two different city pairs: (1) City Pair B → A and (2)
City Pair B → C. We also trained models on City Pair A → B and tested them on City
Pair A → B (i.e., for training and testing on data from flights in the same geographical
direction). We show the results of the algorithms on worst-case scenarios in which the
algorithm is trained on one set of city pairs but tested on different sets of city pairs.
Good performance in this setting implies that the Virtual Sensors are not somehow
specialized for a specific city pair.

In essence the process of computing the percentage of time where the actual fuel
is significantly greater than the estimated fuel provides a score which can be used to
rank order the list of flights that occurred between the two City Pairs. We average the
anomaly scores by Tail Number as a post processing step and then analyze the top Tail
Numbers which have the highest average anomaly scores. This reveals that out of the
84 Tail Numbers in our data set, some Tail Numbers have higher than expected fuel
consumption over a very long period of time.

Table 2 shows the ten tail numbers with the highest percentage of outlying fuel con-
sumption in the test set corresponding to the City Pair B → A using the Elastic Net
algorithm (labeled glm, or generalized linear model, in subsequent tables). Note that
the model is trained on the data corresponding to the flights in the reverse direction,
namely from A → B. Each row in the table corresponds to a different tail number.
The first column shows the average percentage of cruise time that the tail number was
consuming more fuel than expected for the flights between City Pair B → A. The two
adjacent columns are similarly defined. The last column shows the number of flights
for the tail number in the test set. Thus, for example, the first row corresponds to a
tail number which flew 8 times from City Pair B → A. For the cruise portions of the
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Table 2 This table shows the output of the Elastic Net for testing data for the B → A city pair

High (%) Low (% ) Within bounds (%) Number of flights

59.3 8.6 32.1 8

55.0 22.3 22.7 11

53.4 18.3 28.3 3

52.5 8.92 38.6 2

50.5 17.8 31.7 11

50.3 15.9 33.8 6

48.4 15.4 36.2 5

47.3 14.2 38.5 8

46.2 18.2 35.6 8

44.0 23.6 32.5 7

Each row represents one tail number shows the top 10 most anomalous tail numbers as discovered in the
testing data set. The first column represents the percentage of cruise time in which Virtual Sensors estimates
that the aircraft was consuming more than the expected amount of fuel. The two adjacent columns are sim-
ilarly defined. The last column shows the number of flights for that tail number in the data we analyzed.
These outliers represent about 3.5% of the flights for this City Pair, which is a small fraction consistent with
anomalies seen in real-world operations

flight, it used more fuel than expected based on the Virtual Sensors 59.3% of the time,
was below expected consumption about 8.6% of the time and was within bounds the
remainder of the time. Our studies show that the most prominent outlier (not shown
on the table) is for the fictitious tail number which we inserted into the data set.

The outliers shown in Table 2 are taken across 1938 flights, which represents an
anomaly rate of approximately 3.5%. This rate, of course, is dependent on the thresh-
old multiplier that is chosen. For this study we used a value of 3. However, we know
from Fig. 4 that the accuracy of the method is dependent on the value of the threshold
multiplier and the algorithm used. We show the results using the Elastic Net since its
performance characteristics are different than the other algorithms tested, based on
the previous two examples. Once we obtain validation information from an airline
operator we can choose the appropriate algorithm and the associated threshold. We
also point out that the anomaly rate described here is not inconsistent with the vari-
ations expected by operators based on numerous discussions we have had with them
and related aviation experts regarding this matter.

Figure 6 shows the model prediction for a different City Pair (B → C) using the
Elastic Net algorithm. This tail number corresponds to the same one shown in the first
row of Table 2 for a different City Pair. Each flight occurred in December 2005. The
green bands show the threshold for Virtual Sensors based on three standard deviations
of the distribution of the model predictions. The red band line shows the actual con-
sumption. Whenever the actual consumption falls above the green bands, an anomaly
is tagged. The blue lines above the curves indicate each time step where an overage is
detected.

Although we are able to detect these anomalies, it is possible that the rank
ordered lists of Tail Numbers produced by the various algorithms and the City Pair
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Fig. 6 This figure shows one of the top outliers with respect to fuel consumption on the city pair B → C
for a specific tail number. Each panel represents one flight of a specific tail number and is labeled with the
month and year of the flight. The predicted mean and standard deviations are shown for the bagged Elastic
Net. The bars at the top of a panel show the regions where the actual fuel consumption exceeds the threshold
of the 3 standard deviations above the mean

combinations may in fact be random, i.e., it is possible that the Virtual Sensors meth-
odology may not be generating consistent rank orderings of the Tail Numbers for
different algorithms and City Pair combinations. If this were the case, it would indi-
cate a significant issue in the methodology used to generate the anomaly scores. Table 3
shows a pair-wise comparison of algorithms and City Pair combinations for all four
algorithms tested. Certain trends are evident including the fact that the models tend to
have higher overall agreement on the B → A City Pair rather than the B → C City
Pair.

In order to test this hypothesis, for the 84 Tail Numbers in the data base, we ran-
domly simulated 100,000 rank orderings, each generated randomly and computed the
expected overlap in the top quartile of the lists. If the rank orderings are truly random
from different algorithm and City Pair combinations, then we would expect to see
an overlap between the two rank ordered lists near the modal number of overlaps in
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Table 3 This table shows the agreement between the five algorithms (sgp = Stabilized Gaussian Process,
glm = Elastic Net, nnet = Neural Network, tree= Tree, and gp = Gaussian Process Regression) regarding the
top 20 outlying Tail Numbers for the two city pairs considered for testing

B → A B → C
sgp glm nnet tree gp sgp glm nnet tree gp

B → A sgp 12 18 12 14 10 10 7 15 11

glm 12 11 15 9 15 5 8 10 15

nnet 18 11 13 15 10 8 6 16 12

tree 12 15 13 10 14 6 8 12 14

gp 14 9 15 10 9 9 7 15 9

sgp 10 15 10 14 9 5 8 10 12

B → C glm 10 5 8 6 9 5 8 7 5

nnet 7 8 6 8 7 8 8 7 6

tree 15 10 16 12 15 10 7 7 11

gp 11 15 12 14 9 12 5 6 11

Each cell corresponds to a city pair and algorithm combination. For example, the number 12 in the first
column and second row shows that in the top 20 outlying Tail Numbers as detected by the Virtual Sensors
based on Elastic Nets (glm) 12 of the top 20 outliers agree with the top 20 outliers as generated by the
stablegp-based Virtual Sensors. The table shows extremely high agreement in the rank ordering of outli-
ers across different algorithms. The Gaussian Process based Virtual Sensors algorithm shows the highest
agreement with the stable gp Virtual Sensors on the B → C city pair

randomly generated rank ordered lists. Our simulations revealed that the algorithm and
City Pair combinations are remarkably consistent for the algorithms used in this study.
In fact, the same Tail Numbers tend to appear in the top quartile of the list regardless of
the algorithm or City Pair combination that is used. Figure 7 shows the probability that
two lists will have the overlap shown on the x-axis using the simulations mentioned
above. For example, we see that the two lists share 11 of the same Tail Numbers in
the top 20 Tail Numbers in the rank ordered lists with probability of approximately
0.001 which indicates that the chance that these two rank orderings were generated
randomly is very small. As shown in Table 3 the degree of overlap can be as high as
18 for some pairs of algorithms.

7 Implications for aviation carbon footprint

As we have seen in this paper, the carbon footprint of the aviation system is signif-
icant. A single Boeing 747 may emit over 100,000 kg of carbon into the atmosphere
on a single flight. Data mining technologies can be used to potentially reduce these
emissions by revealing situations where aircraft expend more fuel than is expected. In
some cases operational changes may be possible that can help reduce fuel consump-
tion. To detect these situations, this requires the development of a method to detect
the expected fuel burn, which is the subject of this paper. This approach is not unique
to aviation in that it can be applied to numerous other situations where streaming data
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Fig. 7 This figure shows the probability that two different Virtual Sensors algorithms would have a given
number of matches in the top 20 Tail Numbers from a set of 84 possible Tail Numbers. It shows that an
agreement of 11 has a probability of nearly p = 0.001. This shows that the Virtual Sensors algorithms are
generating rank ordered lists that are similar, thus validating the methods for different algorithms and city
pair combinations

is available and fuel consumption is measured. For example, the automotive industry
may benefit from the approach discussed here.

It is evident that the airlines are extremely diligent in their monitoring of fuel
consumption for economic and environmental reasons. However, analyses performed
using snapshots of data and the aggregate fuel consumed on a flight can reveal larger
deviations. More subtle deviations must be detected using higher frequency data. Our
research indicates that it is possible for an aircraft to have modal fuel consumption
and yet have periods of time where the fuel consumption is higher than expected. If
those periods can be addressed through some intervention, it is likely that the aircraft
efficiency can improve and the carbon footprint can be reduced.

8 Conclusions and future work

As of the writing of this paper we do not have validated labeled data indicating fuel
anomalies or other conditions on the aircraft. Those tests must be performed on much
larger data sets with the assistance of the airline. It is possible that the outliers we
observe in this study are due to slightly different aircraft or engine configurations.
Even if that were the case, we have demonstrated the ability to detect these engine
configurations and their impact on fuel consumption. Thus, further validation in an
operational environment is essential for this proof-of-concept study. We plan to study
these methods on data sets with at least 100,000 flights in a large scale, distributed
computing environment and perform the required validation in a real aircraft setting.
Other future activities could include the development of online algorithms for Virtual
Sensors to further help address the scaling issue.
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Another area of research, assuming that the results thus far are validated further on
larger data sets, is the development of techniques to identify the causal factors for the
excess fuel consumption. It may be that the larger deviations from expected behavior
are due to uncontrollable environmental or external factors. However, if we are able
to determine the underlying causal factors and they are actionable, these technologies
could significantly impact the overall approach to fuel analysis in the aviation domain.
A third area of research that we plan to explore is developing combined supervised and
unsupervised anomaly detection methods where the underlying distribution of nomi-
nal data can be used to inform the supervised model of potential outliers, independent
of the predictions of the ensemble of regressors. This work may allow us to improve
the quality and interpretability of the results even further.
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